An InSAR Deformation Phase Retrieval Method Combined with Reference Phase in Mining Areas
Abstract
:1. Introduction
2. Methodology
2.1. Basic Theory of InSAR and Probability Integration Method
2.1.1. INSAR Technology
2.1.2. Basic Theory of PIM
2.2. Research Methods
2.2.1. InSAR Deformation Phase Retrieval Method Combined with Reference Phase
2.2.2. Subsidence Calculation Method Combined with Retrieved Phase with the Displacement Vector Depression Angle Model
3. Applicability Analysis and Simulation Experiment
3.1. Applicability of InSAR Deformation Phase Retrieval Method Combined with Reference Phase
3.2. Simulation Experiment
4. Real Data Experiment and Analysis
4.1. Study Area and Data
4.2. Experiment I: Phase Retrieval Based on PIM
4.2.1. DInSAR Data Processing
4.2.2. Phase Retrieval Based on PIM
4.3. Experiment II: Phase Retrieval Based on GNSS-RTK
4.3.1. GNSS-RTK Data Processing
4.3.2. Phase Retrieval based on GNSS-RTK
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
- (1)
- The reference phase retrieval method effectively mitigates the deformation gradient between adjacent pixels, ameliorating the phase unwrapping challenge and establishing a theoretical basis for phase retrieval.
- (2)
- Experimental findings reveal that the performance of the reference phase retrieval method is influenced by factors including SAR resolution, radar wavelength, deformation gradient, registration accuracy, and resampling. L-band SAR data with higher resolution exhibited superior capabilities in reducing phase retrieval errors.
- (3)
- In Experiment I, the reference phase retrieval method, predicated on PIM and integrated with the depression model, accurately computed surface subsidence along the strike main section. Verification against leveling data yielded an RMSE of 0.05 m. In comparison, the corresponding prediction accuracy of PIM was 0.065 m. This method achieved a 23.1% enhancement in monitoring accuracy. In Experiment II, the RMSE of the subsidence difference calculated using GNSS-RTK and PIM as reference phases, compared to the measured values, stood at 41 mm and 80 mm, respectively. The former shows a 48.8% improvement in accuracy compared to the latter. These results underscore the applicability of the reference phase retrieval method for InSAR deformation phase retrieval in mining areas characterized by significant deformation gradients.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclatures
radar wavelength (m) | |
maximum deformation gradient | |
the edge length of the pixel (m) | |
surface subsidence (m) | |
horizontal movement (m) | |
maximum subsidence (m) | |
subsidence on the strike main section (m) | |
subsidence on the dip main section (m) | |
horizontal movement on the strike main section (m) | |
horizontal movement on the dip main section (m) | |
direction with the maximum horizontal movement (m) | |
tangent of the main influence angle | |
, | tangents of the main influence angle in the uphill and downhill directions |
average mining depth (m) | |
, | mining depth in the uphill and downhill directions (m) |
, | inflection point offset on the strike main section. When s1 = s2, denoted as S (m) |
, | inflection point offset on the dip main section. When s1 = s2, denoted as (m) |
coal seam dip angle (°) | |
the propagation angle of the mining influence (°) | |
horizontal movement coefficient | |
, | horizontal movement coefficients in the uphill and downhill directions |
, | LOS phase corresponding to subsidence and horizontal movement (rad) |
radar incidence angle (°) | |
the angle between azimuth of the LOS and the horizontal movement vector (°) | |
, | actual phase and reference phase (rad) |
, | actual wrapped phase and reference wrapped phase (rad, [, ]) |
, | integer ambiguities of the actual deformation phase and the reference phase |
residual phase of the interferogram (i.e., difference between actual phase and the reference) | |
depression angle of the displacement vector at x on the strike main section (°, (0, 90]) | |
deformation vector | |
horizontal movement vector | |
subsidence vector | |
LOS deformation vector | |
vector angle between the surface deformation vector and the LOS direction (°) | |
subsidence difference between adjacent pixels (m) | |
phase difference between adjacent pixels (rad) | |
, | vertical deformation and horizontal deformation monitored by GNSS-RTK (m) |
References
- Wang, Y.J. Research progress and prospect on ecological disturbance monitoring in mining area. Acta Geod. Cartogr. Sin. 2017, 46, 1705–1716. [Google Scholar]
- Zhang, X.B.; Yang, P.X.; Zhou, M.Z. Multireceiver SAS imagery with generalized PCA. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1502205. [Google Scholar] [CrossRef]
- Huang, P.; Yang, P.X. Synthetic aperture imagery for high-resolution imaging sonar. Front. Mar. Sci. 2022, 9, 1049761. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, W.; Lian, X.; Xu, X. Monitoring Mining Surface Subsidence with Multi-Temporal Three-Dimensional Unmanned Aerial Vehicle Point Cloud. Remote Sens. 2023, 15, 374. [Google Scholar] [CrossRef]
- Luo, M.; Tian, Y.; Zhang, S.; Huang, L.; Wang, H.; Liu, Z.; Yang, L. Individual Tree Detection in Coal Mine Afforestation Area Based on Improved Faster RCNN in UAV RGB Images. Remote Sens. 2022, 14, 5545. [Google Scholar] [CrossRef]
- He, G.Q. Mining Subsidence; China University of Mining and Technology Press: Xuzhou, China, 1991. [Google Scholar]
- Brunori, C.A.; Murgia, F. Spatiotemporal Evolution of Ground Subsidence and Extensional Basin Bedrock Organization: An Application of Multitemporal Multi-Satellite SAR Interferometry. Geosciences 2023, 13, 105. [Google Scholar] [CrossRef]
- Carnemolla, F.; De Guidi, G.; Bonforte, A.; Brighenti, F.; Briole, P. The ground deformation of the south-eastern flank of Mount Etna monitored by GNSS and SAR interferometry from 2016 to 2019. Geophys. J. Int. 2023, 234, 664–682. [Google Scholar] [CrossRef]
- Blachowski, J.; Ellefmo, S.L. Mining Ground Deformation Estimation Based on Pre-Processed InSAR Open Data—A Norwegian Case Study. Minerals 2023, 13, 328. [Google Scholar] [CrossRef]
- Modeste, G.; Doubre, C.; Masson, F. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102392. [Google Scholar] [CrossRef]
- Fielding, E.J.; Sangha, S.S.; Bekaert, D.P.S.; Samsonov, S.V.; Chang, J.C. Surface Deformation of North-Central Oklahoma Related to the 2016Mw 5.8 Pawnee Earthquake from SAR Interferometry Time Series. Seismol. Res. Lett. 2017, 88, 971–982. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Carnec, C.; Massonnet, D.; King, C. Two examples of the use of SAR interferometry on displacement fields of small extent. Geophys. Res. Lett. 1996, 23, 3579–3582. [Google Scholar] [CrossRef]
- Colesanti, C.; Le Mouelic, S.; Bennani, M.; Raucoules, D.; Carnec, C.; Ferretti, A. Detection of mining related ground instabilities using the permanent scatterers technique: A case study in the east of France. Int. J. Remote Sens. 2005, 26, 201–207. [Google Scholar] [CrossRef]
- Ng, H.M.; Ge, L.; Yan, Y.; Li, X.; Chang, H.C.; Zhang, K.; Rizos, C. Mapping accumulated mine subsidence using small stack of sar differential interferograms in the southern coalfield of new south wales, australia. Eng. Geol. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Pawluszek-Filipiak, K.; Borkowski, A. Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydułtowy Mine in Poland. Remote Sens. 2020, 12, 242. [Google Scholar] [CrossRef]
- Kopec, A. Long-term monitoring of the impact of the impact of mining operations on the ground surface at the regional scale based on the InSAR-SBAS technique, the Upper Silesian Coal Basin (Poland). Case study. Acta Geodyn. Geomater. 2021, 19, 93–110. [Google Scholar] [CrossRef]
- Liu, M.; Long, S.; Wu, W.; Liu, P.; Zhang, L.; Zhu, C. Instability Monitoring and Numerical Analysis of Typical Coal Mines in Southwest China Based on DS-InSAR. Sensors 2022, 22, 7811. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Zhu, J.J.; Yang, Z.F.; Li, Z.W. Recent progress in retrieving and predicting mining induced 3D displacements using InSAR. Acta Geod. Cartogr. Sin. 2019, 48, 135–144. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Yi, H.; Hu, J.; Feng, G. Deriving Dynamic Subsidence of Coal Mining Areas Using InSAR and Logistic Model. Remote Sens 2017, 9, 125. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, L.; Deng, K.; Wang, M.; Xu, Y.; Zheng, M.; Luo, Q. An Adaptive Offset-Tracking Method Based on Deformation Gradients and Image Noises for Mining Deformation Monitoring. Remote Sens. 2021, 13, 2958. [Google Scholar] [CrossRef]
- Luo, H.B.; Li, Z.H.; Chen, J.J.; Pearson, C.; Wang, M.; Lv, W.; Ding, H. Integration of range split spectrum interferometry and conventional InSAR to monitor large gradient surface displacements. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 130–137. [Google Scholar] [CrossRef]
- Zhou, D.W.; Qi, L.Z.; Zhang, D.M.; Zhou, B.H.; Guo, L.L. Unmanned Aerial Vehicle (UAV) Photogrammetry Technology for Dynamic Mining Subsidence Monitoring and Parameter Inversion: A Case Study in China. IEEE Access 2020, 8, 16372–16386. [Google Scholar] [CrossRef]
- Zheng, J.; Yao, W.; Lin, X.; Ma, B.; Bai, L. An Accurate Digital Subsidence Model for Deformation Detection of Coal Mining Areas Using a UAV-Based LiDAR. Remote Sens. 2022, 14, 421. [Google Scholar] [CrossRef]
- Benoit, L.; Gourdon, A.; Vallat, R.; Irarrazaval, I.; Gravey, M.; Lehmann, B.; Prasicek, G.; Gräff, D.; Herman, F.; Mariethoz, G. A high-resolution image time series of the Gorner Glacier—Swiss Alps—Derived from repeated unmanned aerial vehicle surveys. Earth Syst. Sci. Data 2019, 11, 579–588. [Google Scholar] [CrossRef]
- Puniach, E.; Gruszczyński, W.; Stoch, T.; Mrocheń, D.; Ćwiąkała, P.; Sopata, P.; Pastucha, E.; Matwij, W. Determination of the coefficient of proportionality between horizontal displacement and tilt change using UAV photogrammetry. Eng. Geol. 2023, 312, 106939. [Google Scholar] [CrossRef]
- Puniach, E.; Gruszczyński, W.; Ćwiąkała, P.; Matwij, W. Application of UAV-based orthomosaics for determination of horizontal displacement caused by underground mining. ISPRS J. Photogramm. Remote Sens. 2021, 174, 282–303. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, Q.X.; Liu, G.L.; Wang, L.Y.; Wang, F.Y.; Wang, K. Detailed mining subsidence monitoring combined with InSAR and probability integral method. Chin. J. Geophys. 2021, 64, 3554–3566. [Google Scholar]
- He, X.F.; Gao, Z.; Xiao, R.Y.; Luo, H.B.; Jia, D.Z.; Zhang, Z.T. Application and prospect of the integration of InSAR and BDS/GNSS for landsurface deformation monitoring. Acta Geod. Cartogr. Sin. 2022, 51, 1338–1355. [Google Scholar]
- Fan, H.D.; Gao, X.X.; Yang, J.K.; Deng, K.Z.; Yu, Y. Monitoring Mining Subsidence Using a Combination of Phase-Stacking and Offset-Tracking Methods. Remote Sens. 2015, 7, 9166–9183. [Google Scholar] [CrossRef]
- Fan, H.D.; Li, T.T.; Gao, Y.T.; Deng, K.Z.; Wu, H.G. Characteristics inversion of underground goaf based on InSAR techniques and PIM. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102526. [Google Scholar] [CrossRef]
- Ma, J.; Yang, J.; Zhu, Z.; Cao, H.; Li, S.; Du, X. Decision-making fusion of InSAR technology and offset tracking to study the deformation of large gradients in mining areas-Xuemiaotan mine as an example. Front. Earth Sci. 2022, 10, 962362. [Google Scholar] [CrossRef]
- Zhou, D.W.; Wang, L.; An, S.K.; Wang, X.P.; An, Y.F. Integration of unmanned aerial vehicle (UAV)-based photogrammetry and InSAR for mining subsidence and parameters inversion: A case study of the Wangjiata Mine, China. Bull. Eng. Geol. Env. 2022, 81, 343. [Google Scholar] [CrossRef]
- Zhang, Y.; Lian, X.; Ge, L.; Liu, X.; Du, Z.; Yang, W.; Wu, Y.; Hu, H.; Cai, Y. Surface Subsidence Monitoring Induced by Underground Coal Mining by Combining DInSAR and UAV Photogrammetry. Remote Sens. 2022, 14, 4711. [Google Scholar] [CrossRef]
- Mao, W.; Wang, S.; Xu, B.; Li, Z.; Zhu, Y. An Improved Phase Unwrapping Method Based on Hierarchical Networking and Constrained Adjustment. Remote Sens. 2021, 13, 4193. [Google Scholar] [CrossRef]
- Liu, W.; Bian, Z.; Liu, Z.; Zhang, Q. Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas. Sensors 2015, 15, 16336–16357. [Google Scholar] [CrossRef] [PubMed]
- Conroy, P.; van Diepen, S.A.N.; Van Asselen, S.; Erkens, G.; van Leijen, F.J.; Hanssen, R.F. Probabilistic Estimation of InSAR Displacement Phase Guided by Contextual Information and Artificial Intelligence. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5234611. [Google Scholar] [CrossRef]
- Heshmat, S.; Tomioka, S.; Nishiyama, S. Performance Evaluation of Phase Unwrapping Algorithms for Noisy Phase Measurements. Int. J. Optomechatronics 2014, 8, 260–274. [Google Scholar] [CrossRef]
- Rosa-Miranda, E.; de la Gonzalez-Ramirez, E.; Villa-Hernandez, J.J.; Berriel-Valdos, L.R.; Olvera-Olvera, C.; Rosa-Vargas, J.I.; de la Saucedo-Anaya, T.; Olague, J.G.A.; Alaniz-Lumbreras, D.; Castano, V.M. An alternative method for phase-unwrapping of interferometric data. J. Eur. Opt. Soc. Rapid Publ. 2014, 9, 14040. [Google Scholar] [CrossRef]
- Fan, H.; Lu, L.; Yao, Y. Method Combining Probability Integration Model and a Small Baseline Subset for Time Series Monitoring of Mining Subsidence. Remote Sens. 2018, 10, 1444. [Google Scholar] [CrossRef]
- Diao, X.P.; Wu, K.; Xu, Y.K.; Zhou, D.W.; Chen, R.L. Prediction-based phase unwrapping for differential interferograms of coal mining areas using a stochastic medium model. Remote Sens. Lett. 2018, 9, 478–487. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, L.; Yu, X.X.; Wei, T.; Chi, S.; Guo, Q. Prediction of 3D deformation due to large gradient mining subsidence based on InSAR and constraints of IDPIM model. Int. J. Remote Sens. 2021, 42, 188–219. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, L.; Yu, X.X.; Chi, S.; Wei, T.; Wang, X. DPIM-Based InSAR Phase Unwrapping Model and a 3D Mining-Induced Surface Deformation Extracting Method: A Case of Huainan Mining Area. KSCE J. Civ. Eng. 2022, 25, 654–668. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, L.; Yu, X.; Lv, W.; Yang, X. A New Method of Monitoring 3D Mining-Induced Deformation in Mountainous Areas Based on Single-Track InSAR. KSCE J. Civ. Eng. 2022, 26, 2392–2407. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Z.; Wu, L.; Niu, J. Large-Gradient Interferometric Phase Unwrapping Over Coal Mining Areas Assisted by a 2-D Elliptical Gaussian Function. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4516405. [Google Scholar] [CrossRef]
- Jiang, K.; Yang, K.; Zhang, Y.; Li, Y.; Li, T.; Zhao, X. An Extraction Method for Large Gradient Three-Dimensional Displacements of Mining Areas Using Single-Track InSAR, Boltzmann Function, and Subsidence Characteristics. Remote Sens. 2023, 15, 2946. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, H.; Yan, Y.; Liu, J.; Ren, J. Combination of InSAR with a Depression Angle Model for 3D Deformation Monitoring in Mining Areas. Remote Sens. 2023, 15, 1834. [Google Scholar] [CrossRef]
- Wempen, J.M.; Mccarter, M.K. Comparison of L-band and X-band differential interferometric synthetic aperture radar for mine subsidence monitoring in central Utah. Int. J. Min. Sci. Technol. 2017, 27, 159–163. [Google Scholar] [CrossRef]
- Dao, T.H.D.; Alves, P.; Lachapelle, G. Performance Evaluation of Multiple Reference Station GPS RTK for a Medium Scale Network. J. Glob. Position. Syst. 2004, 3, 173–182. [Google Scholar] [CrossRef]
- Mutluoglu, O.; Ceylan, A. An Investigation on Cost and Accuracy Analysis of Real-Time Kinematic GPS Method in Acquisition of Spatial Data for GIS. Inf. Technol. J. 2009, 8, 929–933. [Google Scholar] [CrossRef]
- Meron, M.; Chen, A.; Rabinovitz, O.; Traub, E.; Levine-Orlov, V.; Marchaim, U. Water distribution analysis of a linear move irrigator by aerial survey and RTK-GNSS monitors. Precis. Agric. 2022, 23, 894–911. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, P.; Li, M.; Zhao, X. Applicable Framework for Evaluating Urban Vitality with Multiple-Source Data: Empirical Research of the Pearl River Delta Urban Agglomeration Using BPNN. Land 2022, 11, 1901. [Google Scholar] [CrossRef]
- Cai, R.; Cui, Y.; Xue, P. Research on the methods of determining the number of hidden nodes in three-layer BP neural network. Comput. Inf. Technol. 2017, 25, 29–33. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Dai, H.; Yan, Y.; Ren, J.; Zhang, Y.; Liu, J. An InSAR Deformation Phase Retrieval Method Combined with Reference Phase in Mining Areas. Remote Sens. 2023, 15, 4573. https://doi.org/10.3390/rs15184573
Wang Z, Dai H, Yan Y, Ren J, Zhang Y, Liu J. An InSAR Deformation Phase Retrieval Method Combined with Reference Phase in Mining Areas. Remote Sensing. 2023; 15(18):4573. https://doi.org/10.3390/rs15184573
Chicago/Turabian StyleWang, Zhihong, Huayang Dai, Yueguan Yan, Jintong Ren, Yanjun Zhang, and Jibo Liu. 2023. "An InSAR Deformation Phase Retrieval Method Combined with Reference Phase in Mining Areas" Remote Sensing 15, no. 18: 4573. https://doi.org/10.3390/rs15184573