Research on Cotton Field Irrigation Amount Calculation Based on Electromagnetic Induction Technology
Abstract
:1. Introduction
- (1)
- Using EM38-MK2 geodesic conductivity meter to collect apparent conductivity data of a few profile samples, combined with the laboratory measurement simultaneously. A linear regression model based on multiple linear regression method is used to construct soil moisture, soil capacity and field water-holding capacity with high accuracy.
- (2)
- Establishing multi-period model and single-period model to explore the applicability of the instrument.
- (3)
- Calculating predicted irrigation volume at multi-sites based on the field irrigation volume calculation method and using the simple kriging interpolation method to map the spatial distribution of predicted irrigation volume to refine the irrigation strategy and provide guidance for farmland irrigation.
2. Materials and Methods
2.1. Study Area
2.2. EM38-MK2 Measurement
2.3. Irrigation and Rainfall Events
2.4. ECa Data Collection
2.5. Soil Samples Collection
2.6. Establishing Model between Soil Water and ECa
2.7. Calculation Method of Drip Irrigation Cotton Field Soil Irrigation
3. Results
3.1. Statistics Assessment of Soil Moisture Data
3.2. Comparison of Accuracy of Soil Moisture Inversion Models
3.3. Comparison between Multi-Period and Single-Period Model
3.4. Distribution of Irrigation Amount
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fereres, E.; Soriano, M.A. Deficit Irrigation for Reducing Agricultural Water Use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Misra, R.K.; Padhi, J. Assessing Field-Scale Soil Water Distribution with Electromagnetic Induction Method. J. Hydrol. 2014, 516, 200–209. [Google Scholar] [CrossRef]
- Wijewardana, Y.G.N.S.; Galagedara, L.W. Estimation of Spatio-Temporal Variability of Soil Water Content in Agricultural Fields with Ground Penetrating Radar. J. Hydrol. 2010, 391, 24–33. [Google Scholar] [CrossRef]
- Li, P.; He, S.; He, X.; Health, R.T.-E. Seasonal Hydrochemical Characterization and Groundwater Quality Delineation Based on Matter Element Extension Analysis in a Paper Wastewater Irrigation Area; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10, pp. 241–258. [Google Scholar] [CrossRef]
- Foster, S.; Chilton, J.; Nijsten, G.J.; Richts, A. Groundwater-a Global Focus on the “Local Resource”. Curr. Opin. Environ. Sustain. 2013, 5, 685–695. [Google Scholar] [CrossRef]
- Dalton, F.N. Development of Time-Domain Reflectometry for Measuring Soil Water Content and Bulk Soil Electrical Conductivity. In Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice; Wiley: New York, NY, USA, 2012; pp. 143–167. ISBN 9780891189251. [Google Scholar]
- Triantafilis, J.; Kerridge, B.; Journal, S.B.-A. Digital Soil-class Mapping from Proximal and Remotely Sensed Data at the Field Level. Agron. J. 2009, 101, 841–853. [Google Scholar] [CrossRef]
- Altdorff, D.; Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Galagedara, L. Comparison of Multi-Frequency and Multi-Coil Electromagnetic Induction (Emi) for Mapping Properties in Shallow Podsolic Soils. Sensors 2020, 20, 2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visconti, F.; Science, J.D.P.-E.J. of S. A Semi-empirical Model to Predict the EM38 Electromagnetic Induction Measurements of Soils from Basic Ground Properties. Eur. J. Soil Sci. 2021, 72, 720–738. [Google Scholar] [CrossRef]
- Xie, W.; Yang, J.; Yao, R.; Wang, X. Article Spatial and Temporal Variability of Soil Salinity in the Yangtze River Estuary Using Electromagnetic Induction. Remote. Sens. 2021, 13, 1875. [Google Scholar] [CrossRef]
- Corwin, D.; Analysis, J.R. soil science and plant. Establishing Soil Electrical Conductivity-Depth Relations from Electromagnetic Induction Measurements. Commun. Soil Sci. Plant Anal. 1990, 21, 861–901. [Google Scholar] [CrossRef]
- Zare, E.; Arshad, M.; Zhao, D.; Nachimuthu, G.; Triantafilis, J. Two-Dimensional Time-Lapse Imaging of Soil Wetting and Drying Cycle Using EM38 Data across a Flood Irrigation Cotton Field. Agric. Water Manag. 2020, 241, 106383. [Google Scholar] [CrossRef]
- Huth, N.; Research, P.P.-S. An Electromagnetic Induction Method for Monitoring Variation in Soil Moisture in Agroforestry Systems. Soil Res. 2007, 45, 63–72. [Google Scholar] [CrossRef]
- Dunn, B.W.; Beecher, H.G. Using Electro-Magnetic Induction Technology to Identify Sampling Sites for Soil Acidity Assessment and to Determine Spatial Variability of Soil Acidity in Rice Fields. Aust. J. Exp. Agric. 2007, 47, 208–214. [Google Scholar] [CrossRef]
- Wienhold, B.J. Apparent Electrical Conductivity for Delineating Spatial Variability in Soil Properties. In Handbook of Agricultural Geophysics; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA; pp. 211–215. ISBN 9781420019353.
- Van Meirvenne, M.; Islam, M.M.; De Smedt, P.; Meerschman, E.; Van De Vijver, E.; Saey, T. Key Variables for the Identification of Soil Management Classes in the Aeolian Landscapes of North-West Europe. Geoderma 2013, 199, 99–105. [Google Scholar] [CrossRef]
- Jung, W.K.; Kitchen, N.R.; Sudduth, K.A.; Kremer, R.J.; Motavalli, P.P. Relationship of Apparent Soil Electrical Conductivity to Claypan Soil Properties. Soil Sci. Soc. Am. J. 2005, 69, 883–892. [Google Scholar] [CrossRef] [Green Version]
- White, M.L.; Shaw, J.N.; Raper, R.L.; Rodekohr, D.; Wood, W. A Multivariate Approach for High-Resolution Soil Survey Development. Soil Sci. 2012, 177, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Cockx, L.; Van Meirvenne, M.; Vitharana, U.W.A.; Verbeke, L.P.C.; Simpson, D.; Saey, T.; Van Coillie, F.M.B. Extracting Topsoil Information from EM38DD Sensor Data Using a Neural Network Approach. Soil Sci. Soc. Am. J. 2009, 73, 2051–2058. [Google Scholar] [CrossRef]
- Vitharana, U.W.A.; Van Meirvenne, M.; Simpson, D.; Cockx, L.; De Baerdemaeker, J. Key Soil and Topographic Properties to Delineate Potential Management Classes for Precision Agriculture in the European Loess Area. Geoderma 2008, 143, 206–215. [Google Scholar] [CrossRef]
- Jaynes, D.B. Mapping the Areal Distribution of Soil Parameters with Geophysical Techniques. In Applications of GIS to the Modeling of Non-Point Source Pollutants in the Vadose Zone; Wiley: New York, NY, USA, 2015; pp. 205–216. ISBN 9780891189435. [Google Scholar]
- Johnson, C.K.; Doran, J.W.; Duke, H.R.; Wienhold, B.J.; Eskridge, K.M.; Shanahan, J.F. Field-Scale Electrical Conductivity Mapping for Delineating Soil Condition. Soil Sci. Soc. Am. J. 2001, 65, 1829–1837. [Google Scholar] [CrossRef] [Green Version]
- Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J.L. Can Apparent Electrical Conductivity Improve the Spatial Characterization of Soil Organic Carbon? Vadose Zone J. 2009, 8, 586–593. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Friedman, S.P. Soil Properties Influencing Apparent Electrical Conductivity: A Review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Heilig, J.; Kempenich, J.; Doolittle, J.; Brevik, E.C.; Ulmer, M. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains. Soil Horizons 2011, 52, 77. [Google Scholar] [CrossRef]
- Kachanoski, R.G.; Gregorich, E.G.; Van Wesenbeeck, I.J. Estimating Spatial Variations of Soil Water Content Using Noncontacting Electromagnetic Inductive Methods. Can. J. Soil Sci. 1988, 68, 715–722. [Google Scholar] [CrossRef]
- Calamita, G.; Perrone, A.; Brocca, L.; Onorati, B.; Manfreda, S. Field Test of a Multi-Frequency Electromagnetic Induction Sensor for Soil Moisture Monitoring in Southern Italy Test Sites. J. Hydrol. 2015, 529, 316–329. [Google Scholar] [CrossRef]
- Hanson, B.R.; Kaita, K. Response of Electromagnetic Conductivity Meter to Soil Salinity and Soil-Water Content. J. Irrig. Drain. Eng. 1997, 123, 141–143. [Google Scholar] [CrossRef]
- Huang, J.; Scudiero, E.; Clary, W.; Corwin, D.L.; Triantafilis, J. Time-Lapse Monitoring of Soil Water Content Using Electromagnetic Conductivity Imaging. Soil Use Manag. 2017, 33, 191–204. [Google Scholar] [CrossRef]
- Huang, J.; Purushothaman, R.; McBratney, A.; Bramley, H. Soil Water Extraction Monitored per Plot across a Field Experiment Using Repeated Electromagnetic Induction Surveys. Soil Syst. 2018, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.B.; Lamb, D.W.; Lockwood, P.V.; Frazier, P. EM38 for Volumetric Soil Water Content Estimation in the Root-Zone of Deep Vertosol Soils. Comput. Electron. Agric. 2010, 74, 100–109. [Google Scholar] [CrossRef]
- Li, X.; Shao, M.A.; Zhao, C.; Liu, T.; Jia, X.; Ma, C. Regional spatial variability of root-zone soil moisture in arid regions and the driving factors—A case study of Xinjiang, China. Can. J. Soil Sci. 2019, 99, 277–291. [Google Scholar] [CrossRef]
- Kayacan, E.; Kayacan, E.; Ramon, H.; Saeys, W. Towards Agrobots: Identification of the Yaw Dynamics and Trajectory Tracking of an Autonomous Tractor. Comput. Electron. Agric. 2015, 115, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Khongnawang, T.; Zare, E.; Srihabun, P.; Khunthong, I.; Triantafilis, J. Digital soil mapping of soil salinity using EM38 and quasi-3d modelling software (EM4Soil). Soil Use Manag. 2022, 38, 277–291. [Google Scholar] [CrossRef]
- Zarai, B.; Walter, C.; Michot, D.; Montoroi, J.P.; Hachicha, M. Integrating multiple electromagnetic data to map spatiotemporal variability of soil salinity in Kairouan region, Central Tunisia. J. Arid. Land 2022, 14, 186–202. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Hu, B.; Biswas, A.; Jiang, Q.; Liu, W.; Wang, N.; Peng, J. Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions. Remote Sens. 2020, 12, 4043. [Google Scholar] [CrossRef]
- Hedley, C.B.; Yule, I.J. A Method for Spatial Prediction of Daily Soil Water Status for Precise Irrigation Scheduling. Agric. Water Manag. 2009, 96, 1737–1745. [Google Scholar] [CrossRef]
Month | Depth (cm) | Max (%) | Min (%) | Mean (%) | CV(%) |
---|---|---|---|---|---|
June | 0~20 | 17.34 | 8.25 | 12.38 | 23.91 |
20~40 | 21.89 | 14.15 | 17.63 | 14.55 | |
40~60 | 25.82 | 13.91 | 21.16 | 13.43 | |
60~80 | 28.96 | 19.59 | 24.65 | 8.23 | |
80~100 | 30.37 | 20.95 | 26.39 | 8.22 | |
July | 0~20 | 27.19 | 13.27 | 17.32 | 18.06 |
20~40 | 28.15 | 17.42 | 21.04 | 11.38 | |
40~60 | 27.83 | 15.92 | 23.44 | 15.29 | |
60~80 | 29.52 | 18.82 | 26.34 | 9.39 | |
80~100 | 32.43 | 24.36 | 27.95 | 8.40 | |
August | 0~20 | 21.84 | 11.98 | 15.39 | 14.99 |
20~40 | 25.80 | 15.47 | 19.39 | 12.67 | |
40~60 | 27.32 | 17.30 | 23.78 | 13.32 | |
60~80 | 32.27 | 21.25 | 27.57 | 9.21 | |
80~100 | 32.50 | 23.52 | 28.27 | 6.97 |
Month | Depth (cm) | Models | R2 |
---|---|---|---|
June | 20 | y = 0.009X1 + 0.090X2 + 7.032 | 0.87 |
40 | y = 0.045X1 + 0.027X2 + 14.529 | 0.89 | |
60 | y = −0.027X1 + 0.110X2 + 16.929 | 0.76 | |
80 | y = −0.053X1 + 0.126X2 + 20.500 | 0.67 | |
100 | y = −0.037X1 + 0.102X2 + 22.730 | 0.61 | |
July | 20 | y = −0.042X1 + 0.082X2 + 13.166 | 0.87 |
40 | y = −0.057X1 + 0.081X2 + 18.841 | 0.62 | |
60 | y = 0.043X1 − 0.080X2 + 27.092 | 0.77 | |
80 | y = 0.037X1 − 0.063X2 + 28.947 | 0.75 | |
100 | y = −0.032X1 + 0.007X2 + 31.02 | 0.74 | |
August | 20 | y = −0.054X1 − 0.005X2 + 18.27 | 0.88 |
40 | y = 0.033X1 − 0.067X2 + 22.116 | 0.65 | |
60 | y = −0.085X1 + 0.035X2 + 27.41 | 0.79 | |
80 | y = −0.017X1 − 0.035X2 + 30.971 | 0.71 | |
100 | y = 0.061X1 − 0.091X2 + 30.154 | 0.7 |
Month | Depth (cm) | R2 | RMSE (%) | RPD | MRE (%) |
---|---|---|---|---|---|
June | 0–20 | 0.87 | 1.80 | 2.44 | 1.26 |
20–40 | 0.89 | 1.33 | 2.89 | 1.10 | |
40–60 | 0.73 | 1.07 | 1.70 | 2.32 | |
60–80 | 0.64 | 0.98 | 1.38 | 0.89 | |
80–100 | 0.58 | 1.39 | 1.19 | 1.08 | |
July | 0~20 | 0.86 | 0.86 | 2.50 | 0.75 |
20~40 | 0.60 | 1.80 | 1.13 | 2.50 | |
40~60 | 0.75 | 1.87 | 1.75 | 2.30 | |
60~80 | 0.73 | 0.91 | 1.81 | 1.56 | |
80~100 | 0.71 | 1.17 | 1.36 | 1.79 | |
August | 0–20 | 0.88 | 0.66 | 2.69 | 0.57 |
20–40 | 0.59 | 1.73 | 1.20 | 2.99 | |
40–60 | 0.51 | 1.48 | 1.01 | 2.20 | |
60–80 | 0.72 | 1.17 | 1.62 | 0.88 | |
80–100 | 0.66 | 0.79 | 1.38 | 0.69 |
Date | ECa | Min (mS m−1) | Max (mS m−1) | Mean (mS m−1) |
---|---|---|---|---|
June | ECh0.375 | 102.422 | 3.75 | 35.21 |
ECh0.75 | 100 | 10.547 | 54.30 | |
ECV0.75 | 173.359 | 13.086 | 65.20 | |
ECV1.5 | 139.102 | 20.313 | 73.18 | |
July | ECh0.375 | 145 | 34.004 | 117.03 |
ECh0.75 | 163.535 | 23.516 | 112.06 | |
ECV0.75 | 120.891 | 35.898 | 86.95 | |
ECV1.5 | 160.195 | 18.516 | 78.75 | |
August | ECh0.375 | 141.328 | 12.3635 | 65.33 |
ECh0.75 | 159.1605 | 6.035 | 84.22 | |
ECV0.75 | 173.6525 | 16.641 | 82.29 | |
ECV1.5 | 165.0975 | 17.91 | 75.21 |
Method | Depth (cm) | Models | R2 |
---|---|---|---|
Multi-period | 0~20 | Y = 0.097X1 − 0.061X2 + 12.052 | 0.54 |
20~40 | Y = 0.061X1 − 0.033X2 + 17.410 | 0.51 | |
40~60 | Y = 0.070X1 − 0.084X2 + 23.876 | 0.33 | |
60~80 | Y = 0.065X1 − 0.077X2 + 26.993 | 0.60 | |
80~100 | Y = 0.026X1 − 0.029X2 + 27.734 | 0.40 |
Method | Depth (cm) | R2 | RMSE (%) | RPD | MRE (%) |
---|---|---|---|---|---|
Multi-period | 0~20 | 0.52 | 1.29 | 0.96 | 0.89 |
20~40 | 0.47 | 2.42 | 1.01 | 1.74 | |
40~60 | 0.26 | 2.65 | 0.54 | 2.21 | |
60~80 | 0.58 | 1.57 | 1.28 | 1.5 | |
80~100 | 0.35 | 1.34 | 1.38 | 1.58 | |
Single period | 0~20 | 0.89 | 1.21 | 1.79 | 0.68 |
20~40 | 0.64 | 1.75 | 1.36 | 1.46 | |
40~60 | 0.79 | 1.86 | 1.63 | 1.74 | |
60~80 | 0.62 | 1.57 | 1.77 | 1.34 | |
80~100 | 0.77 | 1.47 | 1.33 | 0.84 |
Soil Properties | Max | Min | Mean | CV |
---|---|---|---|---|
Bulky density (g cm−3) | 1.63 | 1.25 | 1.48 | 5% |
Field Capacity (%) | 34.69 | 20.31 | 25.44 | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Wang, M.; Wang, N.; Wang, J.; Peng, J.; Feng, C. Research on Cotton Field Irrigation Amount Calculation Based on Electromagnetic Induction Technology. Remote Sens. 2023, 15, 1975. https://doi.org/10.3390/rs15081975
Han J, Wang M, Wang N, Wang J, Peng J, Feng C. Research on Cotton Field Irrigation Amount Calculation Based on Electromagnetic Induction Technology. Remote Sensing. 2023; 15(8):1975. https://doi.org/10.3390/rs15081975
Chicago/Turabian StyleHan, Jianwen, Mingyue Wang, Nan Wang, Jiawen Wang, Jie Peng, and Chunhui Feng. 2023. "Research on Cotton Field Irrigation Amount Calculation Based on Electromagnetic Induction Technology" Remote Sensing 15, no. 8: 1975. https://doi.org/10.3390/rs15081975