Exploring Annual Urban Expansions in the Guangdong-Hong Kong-Macau Greater Bay Area: Spatiotemporal Features and Driving Factors in 1986–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Urban Expansion Anallysis
2.4. Drving Forces Analysis
2.4.1. Potential Driving Factors and Sources
2.4.2. Geographical Detector
3. Results
3.1. Urban Expansion in the GBA
3.2. Comparison among Cities
3.3. Driving Factors behind the Urban Expansion
4. Discussion
4.1. Urban Expansion and Driving Factors of the GBA
4.2. Comparison of the Cities in the GBA
4.3. Policy Implications
4.4. Limitation and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. World Urbanization Prospects; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [PubMed] [Green Version]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The New Geography of Contemporary Urbanization and the Environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Peng, C.; Jiang, H.; Tian, D.; Lei, X.; Zhou, X. Land use change in Asia and the ecological consequences. Ecol. Res. 2006, 21, 890–896. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Changes in urban air quality during urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
- Ren, W.; Zhong, Y.; Meligrana, J.; Anderson, B.; Watt, W.; Chen, J.; Leung, H.-L. Urbanization, land use, and water quality in Shanghai: 1947–1996. Environ. Int. 2003, 29, 649–659. [Google Scholar] [CrossRef]
- Marcotullio, P.J.; Braimoh, A.K.; Onishi, T. The Impact of Urbanization on Soils. In Land Use and Soil Resources; Springer: Dordrecht, The Netherlands, 2008; pp. 201–250. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Kaza, N. The changing urban landscape of the continental United States. Landsc. Urban Plan. 2013, 110, 74–86. [Google Scholar] [CrossRef]
- Chuang-Lin, F. The urbanization and urban development in China after the reform and opening-up. Econ. Geogr. 2009, 29, 19–25. [Google Scholar]
- China National Bureau of Statistics. 2019 China Statistical Yearbook. Available online: http://www.stats.gov.cn/tjsj/ndsj/201s9/indexeh.htm (accessed on 15 June 2020).
- Long, Y.; Gu, Y.; Han, H. Spatiotemporal heterogeneity of urban planning implementation effectiveness: Evidence from five urban master plans of Beijing. Landsc. Urban Plan. 2012, 108, 103–111. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion based on the geographical detector—a case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Sutton, P.C. A scale-adjusted measure of “Urban sprawl” using nighttime satellite imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Sexton, J.; Song, X.-P.; Huang, C.; Channan, S.; Baker, M.E.; Townshend, J.R. Urban growth of the Washington, D.C.–Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sens. Environ. 2013, 129, 42–53. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Benza, M.; Weeks, J.R.; Stow, D.A.; López-Carr, D.; Clarke, K.C. A pattern-based definition of urban context using remote sensing and GIS. Remote Sens. Environ. 2016, 183, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.-T.; Huang, S.-L. Investigating spatiotemporal patterns of landscape diversity in response to urbanization. Landsc. Urban Plan. 2009, 93, 151–162. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Sun, X.; Wang, F. Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy: A case study of Lianyungang, China. Landsc. Urban Plan. 2010, 94, 218–227. [Google Scholar] [CrossRef]
- Yang, C.; Li, Q.; Zhao, T.; Liu, H.; Gao, W.; Shi, T.; Guan, M.; Wu, G. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sens. 2019, 11, 2215. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhang, C.; Li, Q.; Liu, H.; Gao, W.; Shi, T.; Liu, X.; Wu, G. Rapid urbanization and policy variation greatly drive ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecol. Indic. 2020, 115, 106373. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Y.; Muhammad, R.; Liu, X.; Chen, M. Impervious Surface Expansion: A Key Indicator for Environment and Urban Agglomeration—A Case Study of Guangdong-Hong Kong-Macao Greater Bay Area by Using Landsat Data. J. Sens. 2020, 2020. [Google Scholar] [CrossRef]
- Jiang, L.; Deng, X.; Seto, K.C. Multi-level modeling of urban expansion and cultivated land conversion for urban hotspot counties in China. Landsc. Urban Plan. 2012, 108, 131–139. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, J.; Deng, X. Spatio-temporal Patterns and Driving Forces of Urban Land Expansion in China during the Economic Reform Era. AMBIO J. Hum. Environ. 2005, 34, 450–455. [Google Scholar] [CrossRef]
- Brueckner, J.K.; Fansler, D.A. The Economics of Urban Sprawl: Theory and Evidence on the Spatial Sizes of Cities. Rev. Econ. Stat. 1983, 65, 479–482. [Google Scholar] [CrossRef]
- McGrath, D.T. More evidence on the spatial scale of cities. J. Urban Econ. 2005, 58, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, Q.; Liu, F.; Zhao, X.; Liu, B.; Xu, J.; Yi, L.; Hu, S.; Wang, X.; Zuo, L.; et al. Urban expansion in China and its effect on cultivated land before and after initiating “Reform and Open Policy”. Sci. China Earth Sci. 2016, 59, 1930–1945. [Google Scholar] [CrossRef]
- Fang, C.; Li, G.; Wang, S. Changing and Differentiated Urban Landscape in China: Spatiotemporal Patterns and Driving Forces. Environ. Sci. Technol. 2016, 50, 2217–2227. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Fang, C. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Wu, K.-Y.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc. Urban Plan. 2012, 105, 140–148. [Google Scholar] [CrossRef]
- Fang, S.; Gertner, G.Z.; Sun, Z.; Anderson, A.A. The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landsc. Urban Plan. 2005, 73, 294–306. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- The Central Government of China. The Development Plan for the Guangdong-Hong Kong-Macao Greater Bay Area; The Central Government of China: Beijing, China, 2019.
- Bounoua, L.; Nigro, J.; Zhang, P.; Thome, K.; Lachir, A. Mapping urbanization in the United States from 2001 to 2011. Appl. Geogr. 2018, 90, 123–133. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- China National Bureau of Statistics. China Statistical Yearbook; China National Bureau of Statistics: Beijing, China, 2018.
- Statistics Bureau of Guangdong Province. Guangdong Province Statistics Year Book; Statistics Bureau of Guangdong Province: Guangzhou, China, 2018.
- Statistics and Census Service of Macau. Macau Yearbook of Statistics. Available online: https://www.dsec.gov.mo/Statistic.aspx?lang=en-US&NodeGuid=d45bf8ce-2b35-45d9-ab3a-ed645e8af4bb (accessed on 15 June 2020).
- Census and Statistics Department of Hong Kong. Hong Kong Statistics. Available online: https://www.censtatd.gov.hk/hkstat/ (accessed on 1 July 2020).
- Yang, C.; Li, Q.; Hu, Z.; Chen, J.; Shi, T.; Ding, K.; Wu, G. Spatiotemporal evolution of urban agglomerations in four major bay areas of US, China and Japan from 1987 to 2017: Evidence from remote sensing images. Sci. Total Environ. 2019, 671, 232–247. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Liu, Y.; Fan, P. Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy 2013, 31, 358–370. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, R. Remote sensing monitoring and driving force analysis of urban expansion in Guangzhou City, China. Habitat Int. 2010, 34, 228–235. [Google Scholar] [CrossRef]
- China National Bureau of Statistics. China City Statistical Yearbook; China National Bureau of Statistics: Beijing, China, 2018.
- Braimoh, A.K.; Onishi, T. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 2007, 24, 502–515. [Google Scholar] [CrossRef]
- Wu, F. Urban restructuring in China’s emerging market economy: Towards a framework for analysis. Int. J. Urban Reg. Res. 1997, 21, 640–663. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Tan, M.; Xiu, L.I.; Chang, L.U. An analysis of driving forces of urban land expansion in China. Econ. Geogr. 2003, 23, 635–639. [Google Scholar]
- Taubenböck, H.; Wiesner, M.; Felbier, A.; Marconcini, M.; Esch, T.; Dech, S. New dimensions of urban landscapes: The spatio-temporal evolution from a polynuclei area to a mega-region based on remote sensing data. Appl. Geogr. 2014, 47, 137–153. [Google Scholar] [CrossRef]
- Mu, F.; Zhang, Z. A comparative study of urban expansion on Hong Kong and Macao special administrative region in the past three decades. In Proceedings of the 2008 International Workshop on Earth Observation and Remote Sensing Applications, Beijing, China, 30 June–2 July 2008. [Google Scholar]
- Wang, H.; Zhang, X.; Skitmore, M.; Skitmore, M. Implications for sustainable land use in high-density cities: Evidence from Hong Kong. Habitat Int. 2015, 50, 23–34. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- China Ministry of Environmental Protection. China Statistical Yearbook on Environment; China Statistics Press: Beijing, China, 2019.
- The Central Government of China. Guangdong Invested 8.4 Billion Yuan to Ensure the Safety of Drinking Water Sources. Available online: http://www.gov.cn/xinwen/2019-01/21/content_5359651.htm (accessed on 1 July 2020).
Area | 1986 | 1995 | 2005 | 2017 | ||||
---|---|---|---|---|---|---|---|---|
Pop | GDP | Pop | GDP | Pop | GDP | Pop | GDP | |
GBA | 2395.21 | 2842.45 | 3030.79 | 13,446.49 | 3492.87 | 30226.51 | 6797.7 | 100,326.9 |
Guangzhou | 555.41 | 139.55 | 646.71 | 1260.31 | 750.53 | 5187.85 | 1449.84 | 21,503.15 |
Shenzhen | 51.50 | 41.65 | 99.16 | 842.79 | 181.93 | 5035.77 | 1190.84 | 22,490.06 |
Foshan | 258.64 | 56.57 | 311.06 | 563.72 | 354.48 | 2383.18 | 765.67 | 9398.52 |
Huizhou | 18.21 | 16.63 | 255.90 | 229.57 | 297.58 | 805.11 | 475.55 | 3830.58 |
Jiangmen | 334.61 | 47.17 | 371.81 | 362.73 | 386.24 | 801.70 | 456.17 | 2690.25 |
Zhongshan | 107.35 | 23.23 | 125.25 | 175.82 | 140.82 | 885.72 | 326.00 | 3430.31 |
Dongguan | 123.01 | 30.02 | 143.65 | 296.45 | 165.65 | 2188.19 | 749.66 | 7582.09 |
Zhaoqing | 309.11 | 22.22 | 355.97 | 163.66 | 396.48 | 435.95 | 408.46 | 2110.01 |
Zhuhai | 42.59 | 11.11 | 63.24 | 182.69 | 89.60 | 640.53 | 176.54 | 2675.18 |
Hong Kong | 552.46 | 2350 | 615.60 | 8931.25 | 681.30 | 11,106.25 | 733.66 | 21,456.75 |
Macau | 42.32 | 104.30 | 42.44 | 437.5 | 48.26 | 756.25 | 65.31 | 3160.00 |
Variable Types | Variable | Description | Sources |
---|---|---|---|
Socioeconomic factors | Pop | Population (10,000 people/km2) | From China statistical yearbook, China city statistical yearbook, Guangdong provincial statistical yearbook, Hong Kong, and Macau statistical yearbook [45,46,47,48,52] |
GDP | Gross Domestic Product (100 million Yuan RMB) | From China statistical yearbook, China city statistical yearbook, Guangdong provincial statistical yearbook, Hong Kong, and Macau statistical yearbook [45,46,47,48,52] | |
Income | local financial income (100 million Yuan RMB) | From China statistical yearbook, China city statistical yearbook, Guangdong provincial statistical yearbook, Hong Kong, and Macau statistical yearbook [45,46,47,48,52] | |
Physical factors | Elevation | Elevation (m) | Calculated using ArcGIS 10.5 from the SRTM 30 m DEM (https://earthexplorer.usgs.gov/) |
Slope | Slope (degree) | Derived using the Slope Analysis tool in ArcGIS 10.5 from the SRTM 30 m DEM (https://earthexplorer.usgs.gov/) | |
Dis2city | Distance to center city (m) | Calculated using the Euclidean Distance Analysis and Zonal Statistics tool in ArcGIS 10.Here the center city is defined as Hong Kong because it’s the most developed city in the GBA | |
Road | Road length (m) | From China statistics yearbook, China city statistical yearbook, Guangdong provincial statistical yearbook, and Hong Kong and Macau statistical yearbook [45,46,47,48,52] |
Year | Urban Area | Ratio of Urban Area to GBA’s Territory Area | Period | Area Change | AI | EI | AGR |
---|---|---|---|---|---|---|---|
(km2) | (%) | (km2) | (km2 y−1) | (%) | (%) | ||
1986 | 652.74 | 1.18 | |||||
1990 | 1424.59 | 2.57 | 1986–1990 | 771.85 | 154.37 | 23.65 | 16.89 |
1995 | 2732.68 | 4.94 | 1990–1995 | 1308.09 | 218.02 | 15.30 | 11.47 |
2000 | 3884.71 | 7.02 | 1995–2000 | 1152.03 | 192.01 | 7.03 | 6.04 |
2005 | 5103.83 | 9.22 | 2000–2005 | 1219.12 | 203.19 | 5.23 | 4.65 |
2010 | 6405.57 | 11.57 | 2005–2010 | 1301.74 | 216.96 | 4.25 | 3.86 |
2015 | 7524.63 | 13.59 | 2010–2015 | 1119.06 | 186.51 | 2.91 | 2.72 |
2017 | 8137.09 | 14.70 |
Index | City | 1986–1995 | 1996–2005 | 2006–2015 | 1986–2017 |
---|---|---|---|---|---|
AI (km2 y−1) | GBA | 207.99 | 215.56 | 220.07 | 233.89 |
Guangzhou | 62.41 | 44.95 | 25.34 | 51.51 | |
Shenzhen | 23.16 | 25.87 | 18.91 | 23.26 | |
Hong Kong | 3.27 | 3.08 | 3.97 | 3.70 | |
Macau | 0.31 | 0.18 | 0.15 | 0.22 | |
Foshan | 50.79 | 44.98 | 27.10 | 45.54 | |
Huizhou | 10.24 | 13.50 | 37.18 | 21.93 | |
Jiangmen | 9.19 | 12.23 | 25.16 | 16.87 | |
Zhongshan | 12.11 | 18.09 | 25.13 | 19.57 | |
Dongguan | 26.69 | 43.05 | 36.38 | 36.76 | |
Zhaoqing | 4.80 | 4.90 | 13.08 | 8.33 | |
Zhuhai | 5.03 | 4.74 | 7.67 | 6.21 | |
EI (%) | GBA | 31.87 | 7.89 | 4.31 | 35.83 |
Guangzhou | 75.95 | 6.36 | 2.11 | 62.68 | |
Shenzhen | 31.25 | 8.46 | 3.20 | 31.39 | |
Hong Kong | 4.60 | 2.97 | 2.89 | 5.22 | |
Macau | 7.22 | 2.37 | 1.57 | 5.03 | |
Foshan | 88.44 | 7.96 | 2.56 | 79.29 | |
Huizhou | 27.40 | 9.66 | 12.90 | 58.68 | |
Jiangmen | 9.95 | 6.64 | 7.89 | 18.26 | |
Zhongshan | 22.66 | 10.37 | 6.73 | 36.61 | |
Dongguan | 27.85 | 11.87 | 4.35 | 38.35 | |
Zhaoqing | 8.58 | 4.71 | 8.29 | 14.90 | |
Zhuhai | 17.47 | 5.98 | 5.85 | 21.53 | |
AGR (%) | GBA | 15.39 | 5.84 | 3.59 | 8.20 |
Guangzhou | 24.00 | 4.94 | 1.92 | 9.99 | |
Shenzhen | 15.22 | 6.16 | 2.78 | 7.79 | |
Hong Kong | 3.86 | 2.60 | 2.54 | 3.12 | |
Macau | 5.58 | 2.13 | 1.46 | 3.04 | |
Foshan | 25.70 | 5.88 | 2.28 | 10.77 | |
Huizhou | 14.10 | 6.80 | 8.36 | 9.78 | |
Jiangmen | 7.15 | 5.11 | 5.85 | 6.20 | |
Zhongshan | 12.56 | 7.16 | 5.16 | 8.27 | |
Dongguan | 14.24 | 7.89 | 3.62 | 8.42 | |
Zhaoqing | 6.39 | 3.87 | 6.07 | 5.63 | |
Zhuhai | 10.63 | 4.70 | 4.62 | 6.67 |
(a) Factor Detector | (b) Interaction Detector | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
q1986–1995 | q1996–2005 | q2006–2015 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | |
X1 | 0.30 | 0.47 | 0.19 | 0.47 | ||||||
X2 | 0.11 | 0.24 | 0.36 | 0.56 | 0.24 | |||||
X3 | 0.24 | 0.34 | 0.45 | 0.96 | 0.63 | 0.34 | ||||
X4 | 0.39 | 0.46 | 0.71 | 0.92 | 0.60 | 0.96 | 0.46 | |||
X5 | 0.07 | 0.07 | 0.72 | 0.93 | 0.41 | 0.65 | 0.70 | 0.07 | ||
X6 | 0.25 | 0.25 | 0.11 | 0.78 | 0.58 | 0.65 | 0.69 | 0.50 | 0.25 | |
X7 | 0.46 | 0.46 | 0.23 | 0.93 | 0.61 | 0.97 | 0.53 | 0.68 | 0.74 | 0.46 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yu, L.; Li, X.; Zhang, C.; Shi, T.; Wu, X.; Yang, C.; Gao, W.; Li, Q.; Wu, G. Exploring Annual Urban Expansions in the Guangdong-Hong Kong-Macau Greater Bay Area: Spatiotemporal Features and Driving Factors in 1986–2017. Remote Sens. 2020, 12, 2615. https://doi.org/10.3390/rs12162615
Zhang J, Yu L, Li X, Zhang C, Shi T, Wu X, Yang C, Gao W, Li Q, Wu G. Exploring Annual Urban Expansions in the Guangdong-Hong Kong-Macau Greater Bay Area: Spatiotemporal Features and Driving Factors in 1986–2017. Remote Sensing. 2020; 12(16):2615. https://doi.org/10.3390/rs12162615
Chicago/Turabian StyleZhang, Jie, Le Yu, Xuecao Li, Chenchen Zhang, Tiezhu Shi, Xiangyin Wu, Chao Yang, Wenxiu Gao, Qingquan Li, and Guofeng Wu. 2020. "Exploring Annual Urban Expansions in the Guangdong-Hong Kong-Macau Greater Bay Area: Spatiotemporal Features and Driving Factors in 1986–2017" Remote Sensing 12, no. 16: 2615. https://doi.org/10.3390/rs12162615
APA StyleZhang, J., Yu, L., Li, X., Zhang, C., Shi, T., Wu, X., Yang, C., Gao, W., Li, Q., & Wu, G. (2020). Exploring Annual Urban Expansions in the Guangdong-Hong Kong-Macau Greater Bay Area: Spatiotemporal Features and Driving Factors in 1986–2017. Remote Sensing, 12(16), 2615. https://doi.org/10.3390/rs12162615