The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service
Abstract
:1. Introduction
2. An Overview of Ground Motion Services in Europe
2.1. Special Plan of Remote Sensing of the Environment-Italy
2.2. InSAR Norway
2.3. BodenBewegungsdienst Deutschland-Germany
2.4. Danish Ground Motion Service
2.5. Dutch Ground Motion Service
- Second Level: (1) Level 3a, a gridded dataset in which all the PS/DS points with heights estimated on ground level (defined by the actual height model of the Netherlands, AHN, [39]) are aggregated to a raster with grid size of maximum 200 m; (2) Level 3b, a vector set in which all the PS/DS points with geo-localization on a set of predefined civil objects and highway sections are aggregated with a given polygon set. Both sets are decomposed in the vertical and east–west horizontal components.
2.6. Sentinel-1 Monitoring Services—Italian Regions
3. Technical Aspects for Wide-Area DInSAR Processing
3.1. SAR Data Availability
3.2. Spatial Sampling of Measurements
3.3. Deformation Measurement Products
3.4. Product 3D Location
3.5. Observable Deformation Rates and Deformation Modeling
3.6. Monodimensional Nature of Deformation Measurements
- The difference of velocity and displacement between orbits, see the time series extracted for the central portion of the Piggtind1 landslide in Figure 3C. There is a difference of ca. 30 mm/yr between the velocities registered in ascending and descending orbits. Because of the geometry of the slope with respect to the LOS, the descending orbit can measure 88% of the along-slope motion, whereas the ascending orbit can estimate only the 25% of such component. These values were calculated following well-known geometric rules [59]. The underestimation of the along-slope component is common in A-DInSAR studies in mountainous areas (especially for N–S valleys). The percentage of detectable motion affects the spatial pattern of the moving area as well. A low percentage implies a high probability to have measurement points falling within the stability range. This can produce misinterpretation of the results, if only one orbit is available.
3.7. Low-Frequency Deformation Signals
4. The European Ground Motion Service
- The EGMS aims to provide consistent, updated, standardized, harmonized across national borders and reliable information regarding natural and anthropogenic ground motion phenomena over Europe.
- It will be based on Sentinel-1A and 1B SAR data. These data will be processed at full resolution.
- The EGMS will make use of the available Sentinel-1 acquisitions, i.e., two SAR images taken from two different look angles (ascending and descending), with a revisit time of six days.
- The ground motion will be estimated using an A-DInSAR approach aimed to derive deformation maps and time series.
- For all the regions affected by seasonal snow cover, the processing will be restricted to the snow-free scenes. This represents a limitation for the complete motion retrieval of such areas.
- The EGMS will produce a baseline product, which is composed of all the Sentinel-1 images from February 2015 to the start of data processing, followed by product updates every 12 months.
- A total of ~750 single look complex (SLC) scenes cover Europe in ascending and descending orbit (~20′000 bursts). On average 260 scenes are available for each stack for the baseline product. This leads to a total input volume to produce the EGMS baseline equal to ~1.5 PB of uncompressed SLC images. Every year, the volume will increase by ~350 TB.
- The EGMS will be a highly demanding project in terms of computational capacity. The computing nodes will require high tier technical specifications in terms of central processing unit, random access memory and internal storage.
- The production of the baseline of the EGMS will last for around one year. Up to six months will be needed to set up the processing system and interface, followed by 4 months of data processing. The production of the baseline is expected to be complete in the last quarter of 2021. Then, the service will be updated on an annual basis to guarantee its continuity over time.
EGMS Products and Management
- The first product is Level 2a, which includes deformation maps and deformation time series with measurements along the radar LOS. This is the basic EGMS product, which will be delivered for individual and consistent frames of the original SAR image stacks. The MPs will be referred to reference points, one for each frame. Level 2a products will be generated at full Sentinel-1 resolution.
- The second product is Level 2b. This is an advanced product, where the frames of Level 2a will all be mosaicked. It will consist in an A-DInSAR deformation map combined with a reference GNSS network. The deformation will refer to the radar LOS. The generation of this product will have to overcome the uneven availability of GNSS data across Europe. Level 2b will be generated at full Sentinel-1 resolution.
- The third product is Level 3. This represents a more advanced product, especially with respect to Level 2a. It will include two main deformation components: the horizontal east–west and up–down vertical deformation. The input deformation map is Level 2b. Level 3 will be obtained by combining, at a coarser resolution (100 × 100 m) with respect to the resolution of the Level 2b, the ascending and descending A-DInSAR results.
5. Conclusions
- In Europe, there is a clear trend towards the establishment of wide-area GMSs based on Sentinel-1 data and A-DInSAR techniques. Some of the GMSs are already operational. This demonstrates the feasibility of such services;
- The great majority of the GMSs grant free and open access to the A-DInSAR results;
- The EGMS represents the most important wide-area A-DInSAR deformation monitoring system ever developed;
- For the first time European countries will have access to pan-European free and standardized and quality assured A-DInSAR results;
- The EGMS is a great opportunity to increase the knowledge and use of A-DInSAR results in countries where availability and use of such data are limited or just emerging;
- The EGMS will allow the nations/regions running a GMS to diversify their activities, e.g., by processing very high-resolution radar images (X-band) or increasing the temporal frequency of release of the service products or providing other value-added products;
- The development of national and regional GMS should be coordinated as much as possible with the EGMS, also for reasons of economies of scale. All the GMSs and especially the EGMS, need to reach as many end users as possible. For this reason, attention must be paid to facilitate: The access and exploitation of the products of different GMSs, the user acceptability and user uptake; Note that these objectives involve both expert and non-expert users;
- It is expected that the EGMS is going to stimulate the development of downstream activities and of new tools and procedures to exploit the EGMS results;
- The success of the service will strengthen the role of A-DInSAR as a reliable ground monitoring technique.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanssen, R. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 1–307. [Google Scholar]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A.; Calò, F. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Showstack, R. Sentinel Satellites initiate new Era in Earth Observation. Eos 2014, 26, 239–240. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Zinno, I.; Mossucca, L.; Elefante, S.; De Luca, C.; Casola, V.; Terzo, O.; Casu, F.; Lanari, R. Cloud computing for earth surface deformation analysis via spaceborne radar imaging: A case study. IEEE T. Cloud Comput. 2015, 4, 104–118. [Google Scholar] [CrossRef]
- De Luca, C.; Zinno, I.; Manunta, M.; Lanari, R.; Casu, F. Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series. Remote Sens. Environ. 2017, 202, 3–17. [Google Scholar] [CrossRef]
- Adam, N.; Rodriguez-Gonzalez, F.; Parizzi, A.; Liebhart, W. Wide area persistent scatterer interferometry. In Proceedings of the 2011 Geoscience and Remote Sensing Symposium (IGARSS 2011), Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Manunta, M.; De Luca, C.; Zinno, I.; Casu, F.; Manzo, M.; Bonano, M.; Fusco, A.; Pepe, A.; Onorato, G.; Berardino, P.; et al. The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6259–6281. [Google Scholar] [CrossRef]
- Lanari, R.; Bonano, M.; Buonanno, S.; Casu, F.; De Luca, C.; Fusco, A.; Manunta, M.; Manzo, M.; Onorato, G.; Zeni, G.; et al. Continental scale SBAS-DInSAR processing for the generation of Sentinel-1 deformation time series within a cloud computing environment: Achieved results and lessons learned. In Proceedings of the EGU General Assembly 2020, Wien, Austria, 3–8 May 2020. [Google Scholar] [CrossRef]
- EGMS White Paper. Available online: https://land.copernicus.eu/user-corner/technical-library/egms-white-paper (accessed on 27 April 2020).
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F. A new method for identification and analysis of persistent scatterers in series of SAR images. In Proceedings of the IGARSS 2008–2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 8–11 July 2008; IEEE: Piscataway, NJ, USA, 2008; p. II-449. [Google Scholar]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Costantini, M.; Ferretti, A.; Minati, F.; Falco, S.; Trillo, F.; Colombo, D.; Novali, F.; Malvarosa, F.; Mammone, C.; Vecchioli, F.; et al. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sens. Environ. 2017, 202, 250–275. [Google Scholar] [CrossRef]
- WebGIS of the PST-A Project. Available online: http://www.pcn.minambiente.it/viewer/ (accessed on 28 February 2020).
- Guidelines for the Correct Interpretation of the Interferometric Products of the PST-A Project. Available online: http://www.pcn.minambiente.it/mattm/progetto-pst-prodotti-interferometrici/ (accessed on 28 February 2020).
- Di Martire, D.; Paci, M.; Confuorto, P.; Costabile, S.; Guastaferro, F.; Verta, A.; Calcaterra, D. A nation-wide system for landslide mapping and risk management in Italy: The second Not-ordinary Plan of Environmental Remote Sensing. Int. J. Appl. Earth Obs. 2017, 63, 143–157. [Google Scholar] [CrossRef]
- Italian Space Economy Strategic Plan. Available online: https://www.mise.gov.it/index.php/it/impresa/competitivita-e-nuove-imprese/space-economy (accessed on 15 May 2020). (In Italian)
- Dehls, J.F.; Fischer, L.; Böhme, M.; Saintot, A.; Hermanns, R.H.; Oppikofer, T.; Lauknes, T.R.; Larsen, Y.; Blikra, L.H. Landslide monitoring in western Norway using high resolution TerraSAR-X and Radarsat-2 InSAR. In Landslides and Engineered Slopes: Protecting Society through Improved Understanding; Eberhardt, E., Froese, C., Turner, K., Leroueil, S., Eds.; Taylor & Francis Group: London, UK, 2012; Volume 1, pp. 1321–1325. [Google Scholar]
- Dehls, J.F.; Larsen, Y.; Marinkovic, P.; Lauknes, T.R.; Stødle, D.; Moldestad, D.A. INSAR.No: A National Insar Deformation Mapping/Monitoring Service In Norway--From Concept To Operations. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, 28 July–2 August 2019, Yokohama, Japan; IEEE: Piscataway, NJ, USA, 2019; pp. 5461–5464. [Google Scholar]
- InSAR Norway WebGIS. Available online: https://insar.ngu.no/ (accessed on 3 March 2020).
- Frequently Asked Questions Regarding InSAR Norway. Available online: https://www.ngu.no/en/topic/frequently-asked-questions (accessed on 23 March 2020).
- InSAR Norway Data Guidelines. Available online: https://www.ngu.no/en/topic/about-mapping-service (accessed on 23 March 2020).
- Kalia, A.C.; Frei, M.; Lege, T. A Copernicus downstream-service for the nationwide monitoring of surface displacements in Germany. Remote Sens. Environ. 2017, 202, 234–249. [Google Scholar] [CrossRef]
- Goel, K.; Adam, N.; Shau, R.; Rodriguez-Gonzalez, F. Improving the reference network in wide-area persistent scatterer interferometry for non-urban areas. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1448–1451. [Google Scholar]
- Adam, N. Methodology of a Troposphere Effect Mitigation Processor for SAR Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5334–5344. [Google Scholar] [CrossRef]
- Wendleder, A.; Felbier, A.; Wessel, B.; Huber, M.; Roth, A. A method to estimate long-wave height errors of SRTM S-band DEM. IEEE Geosci. Remote Sens. Lett. 2016, 13, 696–700. [Google Scholar] [CrossRef] [Green Version]
- Jahn, C.H.; Riecken, J.; Trautvetter, C.; Freitag, M.; Kurtenbach, E.; Fabian, G.; Dick, H.G. Quo vadis SAPOS?–Zukünftige Entwicklungen des Positionierungsdienstes der Landesvermessung. Available online: https://geodaesie.info/sr/gnss-2017-kompetenz-fuer-die-zukunft/6245/80 (accessed on 13 May 2020). (In German).
- German Ground Motion Service WebGIS. Available online: https://bodenbewegungsdienst.bgr.de/ (accessed on 3 March 2020).
- German Ground Motion Service (BodenBewegungsdienst Deutschland), Guidelines and InSAR Theory. Available online: https://www.bgr.bund.de/DE/Themen/GG_Fernerkundung/Downloads/nutzungshinweise-bbd-webgis.pdf?__blob=publicationFile&v=3 (accessed on 23 March 2020). (In German).
- German Ground Motion Service, Terms of Use. Available online: https://www.geozentrumhannover.de/gzh/DE/Impressum/datenschutzerklaerung.html (accessed on 23 March 2020). (In German).
- Bischoff, C.A.; Ferretti, A.; Novali, F.; Uttini, A.; Giannico, C.; Meloni, F. Nationwide deformation monitoring with SqueeSAR® using Sentinel-1 data. In Proceedings of the Tenth International Symposium on Land Subsidence, Delft-Gouda, The Netherlands, 20–24 April 2020; p. 31382. [Google Scholar]
- Weber, M. SDFEs Permanente GNSS-Stationer: Beregning af nye ETRS89-Koordinater; Agency for Data Supply and Efficiency: Copenhagen, Denmark, 2019. (In Danish) [Google Scholar]
- Knudsen, P. Dokumentation for Beregning af ny Uplift-Model 2016; DTU Space, Technical University of Denmark: Copenhagen, Denmark, 2016. (In Danish) [Google Scholar]
- Baltink, H.K.; Van Der Marel, H.; Van der Hoeven, A.G. Integrated atmospheric water vapor estimates from a regional GPS network. J. Geophys. Res. Atmos. 2002, 107, ACL-3. [Google Scholar] [CrossRef] [Green Version]
- Lesparre, J. The impact of the antenna mounting on the phase centre variation. In Proceedings of the EUREF Symposium, Riga, Latvia, 14–17 June 2006; pp. 3–5. [Google Scholar]
- Wouters, W.; Bollweg, A. A Detailed Elevation Model Using Airborne Laser Altimetry. Geod. Info. Mag. 1998, 9, 6–9. [Google Scholar]
- Mahapatra, P.; Van der Marel, H.; Van Leijen, F.; Samiei-Esfahany, S.; Klees, R.; Hanssen, R. InSAR datum connection using GNSS-augmented radar transponders. J. Geod. 2018, 92, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tuscany Region WebGIS. Available online: https://geoportale.lamma.rete.toscana.it/difesa_suolo/#/viewer/openlayers/326 (accessed on 20 March 2020).
- Interferometric Data Guidelines (In Italian). Available online: https://www.regione.toscana.it/documents/10180/14985922/Linee+guida+per+l%E2%80%99utilizzo+dei+dati+interferometrici+del+geoportale.pdf/d5b091a7-a5b1-41e9-97c3-270a52b0c7ce (accessed on 20 March 2020).
- Interferometric Data Disclaimer (In Italian). Available online: https://www.regione.toscana.it/documents/10180/14985922/Termini+di+utilizzo+dei+dati+del+geoportale.pdf/76d8b222-f2fc-489e-91f7-fb25fb6e86f4 (accessed on 20 March 2020).
- Del Soldato, M.; Solari, L.; Raspini, F.; Bianchini, S.; Ciampalini, A.; Montalti, R.; Ferretti, A.; Pellegrineschi, V.; Casagli, N. Monitoring Ground Instabilities Using SAR Satellite Data: A Practical Approach. ISPRS Int. J. Geoinf. 2019, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Montalti, R.; Solari, L.; Tofani, V.; Casagli, N. Persistent Scatterers continuous streaming for landslide monitoring and mapping: The case of the Tuscany region (Italy). Landslides 2019, 16, 2033–2044. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, H.Ø.; Lauknes, T.R.; Larsen, Y.; Corner, G.D.; Bergh, S.G.; Dehls, J.; Kierulf, H.P. Visualizing and interpreting surface displacement patterns on unstable slopes using multi-geometry satellite SAR interferometry (2D InSAR). Rem. Sens. Environ. 2017, 191, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Hooper, A. Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Corine Land Cover 2018 Data Access Platform. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 12 April 2020).
- Larsen, Y.; Marinkovic, P.; Dehls, J.F.; Bredal, M.; Bishop, C.; Jøkulsson, G.; Gjøvik, L.P.; Frauenfelder, R.; Salazar, S.; Vöge, M.; et al. European Ground Motion Service: Service Implementation. Copernicus Land Monitoring Service Report. 2020. Available online: https://land.copernicus.eu/user-corner/technical-library/egms-specification-and-implementation-plan (accessed on 11 May 2020).
- Ciampalini, A.; Solari, L.; Giannecchini, R.; Galanti, Y.; Moretti, S. Evaluation of subsidence induced by long-lasting buildings load using InSAR technique and geotechnical data: The case study of a Freight Terminal (Tuscany, Italy). Int. J. Appl. Earth Obs. 2019, 82, 101925. [Google Scholar] [CrossRef]
- Yang, M.; López-Dekker, P.; Dheenathayalan, P.; Liao, M.; Hanssen, R.F. On the value of corner reflectors and surface models in InSAR precise point positioning. ISPRS J. Photogramm 2019, 158, 113–122. [Google Scholar] [CrossRef]
- Van Natijne, A.L.; Lindenbergh, R.C.; Lindenbergh, R.C.; Hanssen, R.F. Massive linking of PS-InSAR deformations to a national airborne laser point cloud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Devanthéry, N.; Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Crippa, B. An Approach to Persistent Scatterer Interferometry. Remote Sens. 2014, 6, 6662–6679. [Google Scholar] [CrossRef] [Green Version]
- Spiller, M.; Forkel, C.; Köngeter, J. Case study: Inflow of groundwater into open-cast mine Hambach, Germany. J. Hydraul. Eng. 2004, 130, 608–615. [Google Scholar] [CrossRef]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Hermanns, R.L.; Hansen, L.; Sletten, K.; Böhme, M.; Bunkholt, H.; Dehls, J.F.; Eilertsen, R.; Fischer, L.; L’Heureux, J.S.; Høgaas, F.; et al. Systematic geological mapping for landslide understanding in the Norwegian context. In Landslide and Engineered Slopes: Protecting Society through Improved Understanding; Eberhardt, E., Froese, C., Turner, K., Leroueil, S., Eds.; CRC Press: London, UK, 2012; Volume 2, pp. 265–271. [Google Scholar]
- National Database of Superficial Deposits. Available online: http://geo.ngu.no/kart/losmasse_mobil/?lang=eng (accessed on 16 April 2020).
- Chen, Q.; Liu, G.; Ding, X.; Hu, J.C.; Yuan, L.; Zhong, P.; Omura, M. Tight integration of GPS observations and persistent scatterer InSAR for detecting vertical ground motion in Hong Kong. Int. J. Appl. Earth Obs. 2010, 12, 477–486. [Google Scholar] [CrossRef]
- Hung, W.C.; Hwang, C.; Chen, Y.A.; Chang, C.P.; Yen, J.Y.; Hooper, A.; Yang, C.Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ. 2011, 115, 957–967. [Google Scholar] [CrossRef]
- Caro Cuenca, M.; Hanssen, R.F.; Hooper, A.; Arikan, M. Surface Deformation of the Whole Netherlands After PSI Analysis. In Proceedings of the Fringe 2011 Workshop, Frascati, Italy, 19–23 September 2011; pp. 1–8. [Google Scholar]
- Hanssen, R.F.; Caro Cuenca, M.; Klees, R.; Van der Marel, H. Decadal vertical deformation of the Netherlands via the geodetic integration of gravimetry, GNSS, leveling and SAR interferometry. In Proceedings of the American Geophysical Union Fall Meeting 2012 Abstracts, San Francisco, CA, USA, 3–7 December 2012. [Google Scholar]
- Copernicus Land Monitoring Service Website. Available online: https://land.copernicus.eu/user-corner/technical-library/european-ground-motion-service (accessed on 8 May 2020).
- European Environment Agency Website. Available online: https://www.eea.europa.eu/about-us (accessed on 8 May 2020).
- Bruyninx, C.; Habrich, H.; Söhne, W.; Kenyeres, A.; Stangl, G.; Völksen, C. Enhancement of the EUREF Permanent Network Services and Products. In Geodesy for Planet Earth; Springer: Berlin/Heidelberg, Germany, 2012; Volume 136, pp. 27–34. [Google Scholar]
Country (region) | Product Portfolio | Processing Characteristics | Data Dissemination | Validation |
---|---|---|---|---|
Denmark |
| Sentinel-1 ascending and descending images PSI + DSI processing Full resolution for the deformation maps and 80 × 80 m resolution for the projected datasets [34] | Full and free policy Distributed through a WebGIS The product portfolio is available for the download Guidelines and a data disclaimer are provided to users | Through ground surveys and ancillary data comparison |
Germany | GNSS-calibrated LOS deformation map and time series | Sentinel-1 ascending and descending images PSI processing Full resolution processing [26,29] | Full and open policy Distributed through a WebGIS [31] Data download for areas smaller than 400 km2 and upon request for larger areas Guidelines and a data disclaimer are available | Supported by GNSS data and based on three key concepts: estimation of the precision of the mean velocity, accuracy of the geocoding and accuracy of the mean velocity [26]. Pilot studies carried out at federal and national level |
Italy (Tuscany) |
| Sentinel-1 ascending and descending images PSI + DSI processing Full resolution processing coupled with time series data mining algorithm [41] | Full and open policy for the deformation maps, restricted for the anomalous point database The deformation maps are available in a WebGIS [42], together with data guidelines The user can download the whole deformation map at regional scale | Ground surveys, supported by ancillary data comparison, are performed to validate the highest deformation rates A survey procedure was designed in accordance with regional entities [45,46] |
Netherlands |
| Sentinel-1 ascending and descending images PSI + DSI processing Full resolution for the deformation map and 200 m for the raster product | Full and open policy Data will be distributed through a dissemination platform under development | GNSS, levelling and corner reflectors |
Norway | LOS deformation map and time series | Sentinel-1 and Radarsat-2 ascending and descending images PSI processing Full resolution processing [21] | Full and open policy. Distributed through a WebGIS [23] The user can download single or averaged (over an area selected by the users) time series | Ground surveys, periodical GNSS measurements, permanent GNSS stations collocated with artificial corner reflectors [47] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens. 2020, 12, 2043. https://doi.org/10.3390/rs12122043
Crosetto M, Solari L, Mróz M, Balasis-Levinsen J, Casagli N, Frei M, Oyen A, Moldestad DA, Bateson L, Guerrieri L, et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sensing. 2020; 12(12):2043. https://doi.org/10.3390/rs12122043
Chicago/Turabian StyleCrosetto, Michele, Lorenzo Solari, Marek Mróz, Joanna Balasis-Levinsen, Nicola Casagli, Michaela Frei, Anneleen Oyen, Dag Anders Moldestad, Luke Bateson, Luca Guerrieri, and et al. 2020. "The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service" Remote Sensing 12, no. 12: 2043. https://doi.org/10.3390/rs12122043