Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. GRACE TWS Anomalies
2.2. TRMM Precipitation Estimates
2.3. Ancillary Data
2.4. PAWS Index
2.5. Uncertainty Estimations
2.6. TWS Trend Estimation
3. Results and Discussion
3.1. Temporal and Spatial Patterns of ΔTWS
3.2. Comparison of IWS, IRWR, PAWS, and WSI
4. Conclusions
- Estimates of TWS derived from GRACE appear to be affected by country size and aridity. The magnitude of uncertainty associated with input data increases as the country size decreases. However, the relationship is complicated by the fact that many of Africa’s largest countries inhabit the most arid zones. Either factor has a physical basis. Confidence in GRACE estimates decreases as the study domain shrinks to below 200,000 km2, generally accepted as the GRACE footprint. Similarly, the small range of variability in available water typical in arid regions leads to smaller uncertainty in estimated TWS. Further research is needed to establish the relative effects of scale and aridity on GRACE anomalies.
- With the above caveat in mind, the PAWS approach classifies 26 out of 48 countries in the same water vulnerable category as AQUASTAT-IRWR. Of the remaining countries, a strong majority was classified in the adjoining or bordering category, suggesting that the hard thresholds contribute to some of the differences in classification. On the other hand, much of the agreement between the two methods is driven by the large no stress category, which acts as a sort of catchall group. This suggests, perhaps not unexpectedly, that the differences between the two methods are accentuated when using small ranges for categorization. Clearly, however, there are fundamental differences between WSI and PAWS, which reflect how available water is conceptualized and calculated.
- Compared to the IRWR, PAWS results in a more moderate assessment of water resources scarcity in the arid areas. This is not surprising, given the spatial continuity of the PAWS estimates compared to the country averaged-IRWR. Additionally, we suspect that PAWS index integrates a larger proportion of groundwater, accounting for the difference.
- The PAWS can be used to rapidly develop first estimates or scenarios of possible water scarcity due to climate change and population growth. A 10% decrease in future water resources, which is within the range of several climate projections for some countries, may entail a significant increase in the number of additional countries facing water scarcity. Preliminary analysis suggests that it is possible to partition GRACE signals to yield proxy estimates of groundwater measurements, although more data are needed in different climatic zones in order to develop robust calibration. Additional research is needed to expand and validate the promise shown by these preliminary estimates, including, for example, the ability to partition GRACE signals to derive proxies for groundwater level dynamics and to investigate water scarcity at finer spatial and temporal time scales.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present and future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Coping with Water Scarcity an Action Framework for Agriculture and Food Security; FAO: Rome, Italy, 2012; p. 78. [Google Scholar]
- Sambu, D. Water Reforms in Kenya: A Historical Challenge to Ensure Universal Water Access and Meet the Millennium Development Goals. Ph.D. Thesis, The University of Oklahoma, Ann Arbor, MI, USA, 2011. [Google Scholar]
- Falkenmark, M.; Widstrand, C. Population and Water Resources: A Delicate Balance. Popul. Bull. 1992, 47, 1–36. [Google Scholar]
- Savenije, H.H.G. Water Scarcity Indicators; the Deception of the Numbers. Phys. Chem. Earfh (B) 2000, 25, 199–204. [Google Scholar] [CrossRef]
- White, C. Understanding Water Scarcity: Definitions and Measurements; Global Water Forum: In Water Security. 2012. Available online: http://www.globalwaterforum.org/2012/05/07/understanding-water-scarcity-definitions-and-measurements/ (accessed on 25 May 2016).
- Molle, F.; Mollinga, P. Water poverty indicators: Conceptual problems and policy issues. Water Policy 2003, 5, 529–544. [Google Scholar] [CrossRef]
- Falkenmark, M. The Massive Water Scarcity Now Threatening Africa: Why Isn’t It Being Addressed? Ambio 1989, 18, 112–118. [Google Scholar]
- Shiklomanov, I.A. World fresh water resources. In Water in Crisis: A Guide to the World’s Fresh Water Resources; Gleick, P.H., Ed.; Pacific Institute for Studies In development, Environment, and Security Stockholm Environment Institute: New York, NY, USA; Oxford, UK, 1993. [Google Scholar]
- Gleick, P.H. Basic Water Requirements for Human Activities: Meeting Basic Needs. Water Int. 1996, 21, 83–92. [Google Scholar]
- Yang, H.; Reichert, P.; Abbaspour, K.C.; Zehnder, A.J.B. A Water Resources Threshold and Its Implications for Food Security. Environ. Sci. Technol. 2003, 37, 3048–3054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, H.M.L.; Alipaz, S. An Integrated Indicator Based on Basin Hydrology, Environment, Life, and Policy: The Watershed Sustainability Index. Water Resour. Manag. 2006, 21, 883–895. [Google Scholar] [CrossRef]
- Seckler, D.; Amarasinghe, U.; Molden, D.J.; Silva, R.D.; Barker, R. World Water Demand and Supply, 1990 to 2025: Scenarios and Issues; IWMI: Colombo, Sri Lanka, 1998. [Google Scholar]
- Rockström, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, DC, USA, 2011. [Google Scholar]
- Ohlsson, L. Water Conflicts and Social Resource Scarcity. Phys. Chem. Earth (B) 2000, 25, 213–220. [Google Scholar] [CrossRef]
- Alcamo, J.; Henrichs, T. Critical regions: A model-based estimation of world water resources sensitive to global changes. Aquat. Sci. 2002, 64, 352–362. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Douglas, E.M.; Green, P.A.; Revenga, C. Geospatial Indicators of Emerging Water Stress: An Application to Africa. Ambio (R. Sweedish Acad. Sci.) 2005, 34, 230–236. [Google Scholar] [CrossRef]
- Lawrence, P.; Meigh, J.; Sullivan, C. The Water Poverty Index: An International Comparison; Department of Economics, Keele University: Keele, UK, 2002. [Google Scholar]
- McNulty, S.; Sun, G.; Myers, J.M.; Cohen, E.; Caldwell, P. Robbing Peter to Pay Paul: Tradeoffs Between Ecosystem Carbon Sequestration and Water Yield. In Proceedings of the Environmental Water Resources Institute Meeting, Madison, WI, USA, 23–27 August 2010. [Google Scholar]
- Gerten, D.; Heinke, J.; Hoff, H.; Biemans, H.; Fader, M.; Waha, K. Global Water Availability and Requirements for Future Food Production. J. Hydrometeorol. 2011, 12, 885–899. [Google Scholar] [CrossRef]
- AQUASTAT. Freshwater Availability—Precipitation and Internal Renewable Water Resources (IRWR); Food and Agriculture Orgnization (FAO) of the United Nation (UN): Rome, Italy, 2014. [Google Scholar]
- Bertsch, M. Exploring Alternative Futures of the World Water System. Building a Second Generation of World Water Scenarios Driving Force: Water Resources and Ecosystems; United Nations World Water Assessment Programme (UN WWAP): Perugia, Italy, 2010. [Google Scholar]
- Naik, P.K. Water crisis in Africa: Myth or reality? Int. J. Water Resour. Dev. 2017, 33, 326–339. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P. Integrated Multi-satellitE Retrievals for GPM (IMERG), version 4.4. NASA’s Precipitation Processing Center. Available online: ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/ (accessed on 15 March 2018).
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Cretaux, J.F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Berge-Nguyen, M.; Gennero, M.C.; Nino, F.; Del Rio, R.A.; Cazenave, A.; et al. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Gokmen, M.; Vekerdy, Z.; Lubczynski, M.W.; Timmermans, J.; Batelaan, O.; Verhoef, W. Assessing Groundwater Storage Changes Using Remote Sensing–Based Evapotranspiration and Precipitation at a Large Semiarid Basin Scale. J. Hydrometeorol. 2013, 14, 1733–1753. [Google Scholar] [CrossRef]
- Swenson, S.; Famiglietti, J.; Basara, J.; Wahr, J. Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data. Water Resour. Res. 2008, 44, 1–12. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, 1–11. [Google Scholar] [CrossRef]
- Hasan, E.; Tarhule, A.; Hong, Y.; Moore, B., III. Potential Water Availability Index (PWAI): A New Water Vulnerability Index for Africa Based on GRACE Data. In Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Hassan, A.A.; Jin, S. Lake level change and total water discharge in East Africa Rift Valley from satellite-based observations. Glob. Planet. Chang. 2014, 117, 79–90. [Google Scholar] [CrossRef]
- Hasan, E.; Dokou, Z.; Kirstetter, P.-E.; Tarhule, A.; Anagnostou, E.N.; Bagtzoglou, A.C.; Hong, Y. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E. The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth-Sci. Rev. 2014, 136, 289–300. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
- Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 2006, 15, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.H.; Famiglietti, J.S.; Chambers, D.P. GRACE-Based Estimates of Terrestrial Freshwater Discharge from Basin to Continental Scales. J. Hydrometeorol. 2009, 10, 22–40. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Estimating Large-Scale Precipitation Minus Evapotranspiration from GRACE Satellite Gravity Measurements. J. Hydrometeorol. 2006, 7, 252–270. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Chen, J.; Seneviratne, S.I.; Holl, P.V.; Wilson, C.R. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, K.; Xue, X.; Hong, Z.; Hong, Y.; Gourley, J.J. Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States. Water Resour. Res. 2015, 51, 6485–6499. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G.; Frappart, F.; Güntner, A.; Ngo-Duc, T.; Cazenave, A.; Laval, K. Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Longuevergne, L.; Scanlon, B.R.; Wilson, C.R. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Reager, J.T.; Famiglietti, J.S. Characteristic mega-basin water storage behavior using GRACE. Water Resour. Res. 2013, 49, 3314–3329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503. [Google Scholar] [CrossRef] [PubMed]
- Luthcke, S.B.; Rowlands, D.D.; Sabaka, T.J.; Loomis, B.D.; Horwath, M.; Arendt, A.A. Gravimetry Measurements from Space; Wiley Blackwell: Oxford, UK, 2015; Volume 10. [Google Scholar]
- Rowlands, D.D.; Luthcke, S.B.; Klosko, S.M.; Lemoine, F.G.R.; Chinn, D.S.; McCarthy, J.J.; Cox, C.M.; Anderson, O.B. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef] [Green Version]
- Normandin, C.; Frappart, F.; Diepkilé, A.T.; Marieu, V.; Mougin, E.; Blarel, F.; Lubac, B.; Braquet, N.; Ba, A. Evolution of the Performances of Radar Altimetry Missions from ERS-2 to Sentinel-3A over the Inner Niger Delta. Remote Sens. 2018, 10, 833. [Google Scholar] [CrossRef]
- Middleton, N.; Thomas, D.S.G.; United Nations Environment Programme. World Atlas of Desertification; UNEP: London, UK, 1992. [Google Scholar]
- Weiskel, P.K.; Vogel, R.M.; Steeves, P.A.; Zarriello, P.J.; DeSimone, L.A.; Ries, K.G. Water use regimes: Characterizing direct human interaction with hydrologic systems. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surv. Geophys. 2016, 37, 357–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E.; Milewski, A.; Sauck, W.; Becker, R.; Welton, B. Integration of GRACE (Gravity Recovery and Climate Experiment) data with traditional data sets for a better understanding of the time-dependent water partitioning in African watersheds. Geology 2011, 39, 479–482. [Google Scholar] [CrossRef]
- Papa, F.; Güntner, A.; Frappart, F.; Prigent, C.; Rossow, W.B. Variations of surface water extent and water storage in large river basins: A comparison of different global data sources. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Muller Schmied, H.; van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Evans, J.S.; Ram, K. spatialEco: Spatial Analysis and Modelling Utilities. Available online: https://cran.r-project.org/package=spatialEco (accessed on 21 December 2018).
- Werth, S.; White, D.; Bliss, D.W. GRACE Detected Rise of Groundwater in the Sahelian Niger River Basin. J. Geophys. Res. Solid Earth 2017, 122, 10459–10477. [Google Scholar] [CrossRef]
- Hasan, E.; Tarhule, A.; Kirstetter, P.-E.; Clark, R.; Hong, Y. Runoff sensitivity to climate change in the Nile River Basin. J. Hydrol. 2018, 561, 312–321. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climatic and environmental change in Africa during the last two centuries. Clim. Res. 2001, 17, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Lamb, P.J.; Trenberth, K.E.; Hulme, M.; Jones, P.D.; Xie, P. The recent Sahel drought is real. Int. J. Climatol. 2004, 24, 1323–1331. [Google Scholar] [CrossRef] [Green Version]
- Dunning, C.M.; Black, E.; Allan, R.P. Later Wet Seasons with More Intense Rainfall over Africa under Future Climate Change. J. Clim. 2018, 31, 9719–9738. [Google Scholar] [CrossRef]
- Shongwe, M.E.; van Oldenborgh, G.J.; van den Hurk, B.; van Aalst, M. Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part II: East Africa. J. Clim. 2011, 24, 3718–3733. [Google Scholar] [CrossRef]
- Bucchignani, E.; Mercogliano, P.; Panitz, H.-J.; Montesarchio, M. Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Chang. Res. 2018, 9, 66–80. [Google Scholar] [CrossRef]
Threshold (m3 per capita) | Status |
---|---|
>1700 | Occasional or local water stress (no stress) |
1700–1000 | Regular water stress (Vulnerable) |
1000–500 | Chronic water shortage (Stressed) |
<500 | Absolute water scarcity (Scarcity) |
Water Scarcity Type | Indicator | Reference |
---|---|---|
Physical Water Scarcity | Falkenmark Indicator | [10] |
Water Resources Vulnerability Index | [11] | |
Basic Human Water Requirement | [12] | |
Water Resources Availability | [13] | |
Watershed Sustainability Index | [14] | |
Economical Water Scarcity | Physical Economic Water Scarcity | [15] |
Green-Blue Water Scarcity | [16] | |
Water Scarcity Function of Water Footprint | [17] | |
Social Water Scarcity | Social Water Stress Index | [18] |
Water Use Availability Ratio | [19] | |
Local Relative Water Use and Reuse | [20] | |
Technological Water Scarcity | Water Poverty Index | [21] |
Water Supply Stress Index | [22] |
Data Type | Source | Size | Reference | Description |
---|---|---|---|---|
GRACE | http://www2.csr.utexas.edu/grace/RL05_mascons.html | 1.0° | [27] | TWS anomaly |
TRMM (3B42) | https://pmm.nasa.gov/data-access/downloads/trmm | 0.25° | [28] | Satellite precipitation |
AQUASTAT | http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en | Time series | ||
CRU (TS v. 4.02) | https://crudata.uea.ac.uk/cru/data/hrg/ | 0.5° | [29] | Gridded observation |
Noah-LSM | https://disc.gsfc.nasa.gov/datasets?keywords=noah025&page=1 | 1.0° | [30] | LSM data |
Groundwater | BRAVE Project | In-situ data | ||
Lake level | http://hydroweb.theia-land.fr/ | [31] | Time series |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, E.; Tarhule, A.; Hong, Y.; Moore, B., III. Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data. Remote Sens. 2019, 11, 904. https://doi.org/10.3390/rs11080904
Hasan E, Tarhule A, Hong Y, Moore B III. Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data. Remote Sensing. 2019; 11(8):904. https://doi.org/10.3390/rs11080904
Chicago/Turabian StyleHasan, Emad, Aondover Tarhule, Yang Hong, and Berrien Moore, III. 2019. "Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data" Remote Sensing 11, no. 8: 904. https://doi.org/10.3390/rs11080904
APA StyleHasan, E., Tarhule, A., Hong, Y., & Moore, B., III. (2019). Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data. Remote Sensing, 11(8), 904. https://doi.org/10.3390/rs11080904