Joint Sparse and Low-Rank Multi-Task Learning with Extended Multi-Attribute Profile for Hyperspectral Target Detection
Abstract
:1. Introduction
- EMAP is adopted for spatial feature extraction in hyperspectral target detection. Compared to the conventional detectors which are susceptible to the spectral variability caused by imaging conditions, we take advantage of the multi-level spatial information to identify targets of interest. By introducing the spatial information, the detection performance can be significantly improved.
- There exists high dimensional redundancy among the multiple attribute profiles. Thus, the manner that directly utilizes multiple profiles tends to degrade the accuracy [27], To alleviate this problem, we resort to an MTL framework which can reduce the redundancy and fully exploit the information simultaneously.
- Based on the substantial difference between the background and target samples, we not only model the target and background pixels separately but also add a more reasonable regularization term. Compared to the existing MTL based methods, the proposed algorithm can capture the intrinsic relatedness of the background modeling tasks by enforcing the low-rank constraint.
2. Related Work
2.1. Extended Morphological Attribute Profile
2.2. Multi-task Learning Framework
3. Proposed Algorithm
3.1. MTJSLR with EMAP Model
3.2. Framework of the MTJSLR-EMAP Detector
4. Experimental Results and Analysis
4.1. Dataset Description
4.2. Experimental Settings
4.3. Detection Performance
4.4. Parameter Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef] [Green Version]
- Nasrabadi, N.M. Hyperspectral target detection: An overview of current and future challenges. IEEE Signal Process. Mag. 2014, 31, 34–44. [Google Scholar] [CrossRef]
- Du, B.; Zhang, L. A discriminative metric learning based anomaly detection method. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6844–6857. [Google Scholar]
- Du, B.; Zhang, L. Target detection based on a dynamic subspace. Pattern Recognit. 2014, 47, 344–358. [Google Scholar]
- Zou, Z.; Shi, Z. Hierarchical suppression method for hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 330–342. [Google Scholar] [CrossRef]
- Du, B.; Zhang, Y.; Zhang, L.; Tao, D. Beyond the sparsity-based target detector: A hybrid sparsity and statistics-based detector for hyperspectral images. IEEE Trans. Image Process. 2016, 25, 5345–5357. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Ren, H.; Chang, C.I. A comparative study for orthogonal subspace projection and constrained energy minimization. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1525–1529. [Google Scholar]
- Manolakis, D.; Marden, D.; Shaw, G.A. Hyperspectral image processing for automatic target detection applications. Linc. Lab. J. 2003, 14, 79–116. [Google Scholar]
- Lu, X.Q.; Zhang, W.X.; Li, X.L. A hybrid sparsity and distance-based discrimination detector for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1704–1717. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Sparse representation for target detection in hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 2011, 5, 629–640. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Simultaneous joint sparsity model for target detection in hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 676–680. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, L. A sparse representation-based binary hypothesis model for target detection in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1346–1354. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, Y.; Zhang, L. Spatially adaptive sparse representation for target detection in hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1923–1927. [Google Scholar] [CrossRef]
- Yang, S.; Shi, Z. Hyperspectral image target detection improvement based on total variation. IEEE Trans. Image Process. 2016, 25, 2249–2258. [Google Scholar] [CrossRef] [PubMed]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef]
- Jia, X.; Kuo, B.C.; Crawford, M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101, 676–697. [Google Scholar] [CrossRef]
- Sun, K.; Geng, X.; Ji, L. A new sparsity-based band selection method for target detection of hyperspectral image. IEEE Geosci. Remote Sens. Lett. 2015, 12, 329–333. [Google Scholar]
- Farrell, M.D.; Mersereau, R.M. On the impact of pca dimension reduction for hyperspectral detection of difficult targets. IEEE Geosci. Remote Sens. Lett. 2005, 2, 192–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, L.; Liu, T. Joint sparse representation and multitask learning for hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 2017, 55, 894–906. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Remote Sens. 2010, 31, 5975–5991. [Google Scholar] [CrossRef]
- Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 2018, 5, 37–78. [Google Scholar] [CrossRef]
- Song, B.Q.; Li, J.; Mura, M.D.; Li, P.J.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A.; Chanussot, J. Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5122–5136. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, H.Y.; Zhang, L.P.; Huang, X.; Zhang, L.F. Joint collaborative representation with multitask learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5923–5936. [Google Scholar] [CrossRef]
- Ghamisi, P.; Dalla Mura, M.; Benediktsson, J.A. A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335–2353. [Google Scholar] [CrossRef]
- Zhang, Y.; Ke, W.; Du, B.; Hu, X. Independent encoding joint sparse representation and multitask learning for hyperspectral target detection. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1933–1937. [Google Scholar] [CrossRef]
- Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Imani, M. Attribute profile based target detection using collaborative and sparse representation. Neurocomputing 2018, 313, 364–376. [Google Scholar] [CrossRef]
- Pesaresi, M.; Benediktsson, J.A. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Geosci. Remote Sens. Lett. 2001, 39, 309–320. [Google Scholar] [CrossRef]
- Chen, J.H.; Liu, J.; Ye, J. Learning incoherent sparse and low-rank patterns from multiple tasks. ACM Trans. Knowl. Discov. Data 2012, 5, 22. [Google Scholar] [CrossRef]
- Chen, X.; Pan, W.; Kwok, J.T.; Carbonell, J.G. Accelerated gradient method for multi-task sparse learning problem. In Proceedings of the 2009 9th IEEE International Conference on Data Mining, Miami, FL, USA, 6–9 December 2009; pp. 746–751. [Google Scholar]
- Ji, S.; Ye, J. An accelerated gradient method for trace norm minimization. In Proceedings of the International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 457–464. [Google Scholar]
- Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.C.; Xia, G.S.; Zhang, L.P.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Yao, X.W.; Han, J.W.; Zhang, D.W.; Nie, F.P. Revisiting co-saliency detection: A novel approach based on two-stage multi-view spectral rotation co-clustering. IEEE Trans. Image Process. 2017, 26, 3196–3209. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; Cheng, G.; Li, Z.P.; Zhang, D.W. A unified metric learning-based framework for co-saliency detection. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2473–2483. [Google Scholar] [CrossRef]
Detectors | Synthetic Dataset | AVIRIS Dataset | Xiong’an Dataset | ||||
---|---|---|---|---|---|---|---|
Spectral | EMAP | Spectral | EMAP | Spectral | EMAP | ||
CEM | AUC | 0.7027 | 0.9966 | 0.9950 | 0.9963 | 0.6836 | 0.9369 |
Time | 0.02 | 0.09 | 0.03 | 0.02 | 0.15 | 0.09 | |
ACE | AUC | 0.7579 | - | 0.9881 | 0.9811 | 0.5576 | 0.9653 |
Time | 0.13 | 0.14 | 0.28 | 0.18 | 0.59 | 0.43 | |
hCEM | AUC | 0.6171 | 0.9998 | 0.9157 | 0.9248 | 0.9390 | 0.8631 |
Time | 1.15 | 1.62 | 2.01 | 1.65 | 1.76 | 1.80 | |
STD | AUC | 0.8070 | 0.9414 | 0.9708 | 0.9945 | 0.7557 | 0.8286 |
Time | 8.60 | 9.85 | 11.30 | 7.81 | 18.30 | 14.78 | |
JSR-MTL | AUC | 0.8748 | 0.9966 | 0.9133 | 0.9983 | 0.7495 | 0.7216 |
Time | 1.36E+03 | 1.49E+03 | 2.39E+03 | 2.26E+03 | 4.01E+03 | 4.72E+03 | |
IEJSR-MTL | AUC | 0.9845 | 0.9996 | 0.9892 | 0.9988 | 0.8794 | 0.9620 |
Time | 1.42E+03 | 1.49E+03 | 2.92E+03 | 2.14E+03 | 4.11E+03 | 4.91E+03 | |
proposed | AUC | 0.9618 | 0.9999 | 0.9992 | 0.9991 | 0.9614 | 0.9805 |
Time | 2.40E+03 | 2.48E+03 | 3.22E+03 | 3.26E+03 | 4.05E+03 | 5.16E+03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, X.; Wang, N.; Cen, Y. Joint Sparse and Low-Rank Multi-Task Learning with Extended Multi-Attribute Profile for Hyperspectral Target Detection. Remote Sens. 2019, 11, 150. https://doi.org/10.3390/rs11020150
Wu X, Zhang X, Wang N, Cen Y. Joint Sparse and Low-Rank Multi-Task Learning with Extended Multi-Attribute Profile for Hyperspectral Target Detection. Remote Sensing. 2019; 11(2):150. https://doi.org/10.3390/rs11020150
Chicago/Turabian StyleWu, Xing, Xia Zhang, Nan Wang, and Yi Cen. 2019. "Joint Sparse and Low-Rank Multi-Task Learning with Extended Multi-Attribute Profile for Hyperspectral Target Detection" Remote Sensing 11, no. 2: 150. https://doi.org/10.3390/rs11020150