Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Dynamics Modeling for Formulations
2.2. Simulation Details
2.3. Machine Learning Modeling
3. Results and Discussion
3.1. Data Analysis
3.2. Training Artificial Neural Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, H.; Zhang, X.; Ju, F.; Tsai, S.-B. A study on curing kinetics of nano-phase modified epoxy resin. Sci. Rep. 2018, 8, 3045. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liang, Z.; Wang, B.; Zhang, C.; Kramer, L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1225–1232. [Google Scholar] [CrossRef]
- Robertson, I.D.; Yourdkhani, M.; Centellas, P.J.; Aw, J.E.; Ivanoff, D.G.; Goli, E.; Lloyd, E.M.; Dean, L.M.; Sottos, N.R.; Geubelle, P.H. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 2018, 557, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Wang, R.; Wang, D.; Peng, X.; Zhao, Y.; Liu, Q. A phosphorus-containing hyperbranched phthalocyanine flame retardant for epoxy resins. Sci. Rep. 2021, 11, 17731. [Google Scholar] [CrossRef]
- Hartshorn, S.R. Structural Adhesives: Chemistry and Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hussain, M.; Nakahira, A.; Nishijima, S.; Niihara, K. Fracture behavior and fracture toughness of particulate filled epoxy composites. Mater. Lett. 1996, 27, 21–25. [Google Scholar] [CrossRef]
- Tang, L.; Weder, C. Cellulose whisker/epoxy resin nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- May, C. Epoxy Resins: Chemistry and Technology; Routledge: Watsonville, CA, USA, 2018. [Google Scholar]
- Okabe, T.; Takehara, T.; Inose, K.; Hirano, N.; Nishikawa, M.; Uehara, T. Curing reaction of epoxy resin composed of mixed base resin and curing agent: Experiments and molecular simulation. Polymer 2013, 54, 4660–4668. [Google Scholar] [CrossRef]
- Liu, C.; Sun, M.; Zhang, B.; Zhang, X.; Xue, G.; Zhang, X. Diamine-functional bisphthalonitrile: Synthesis, characterization and its application in curing epoxy resin. Eur. Polym. J. 2019, 121, 109304. [Google Scholar] [CrossRef]
- Wang, H.; Ji, Y.; Li, Y. Simulation and design of energy materials accelerated by machine learning. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1421. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [Google Scholar] [CrossRef] [Green Version]
- Bzdok, D.; Meyer-Lindenberg, A. Machine learning for precision psychiatry: Opportunities and challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allyn, J.; Allou, N.; Augustin, P.; Philip, I.; Martinet, O.; Belghiti, M.; Provenchere, S.; Montravers, P.; Ferdynus, C. A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: A decision curve analysis. PLoS ONE 2017, 12, e0169772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Wang, J.; Du, P.; Hu, L.; Zheng, X.; Chen, G. Improving the performance of long-range-corrected exchange-correlation functional with an embedded neural network. J. Phys. Chem. A 2017, 121, 7273–7281. [Google Scholar] [CrossRef]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 2000, 44, 206–226. [Google Scholar] [CrossRef]
- Zimmerling, C.; Dörr, D.; Henning, F.; Kärger, L. A machine learning assisted approach for textile formability assessment and design improvement of composite components. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105459. [Google Scholar] [CrossRef]
- Khan, A.; Ko, D.-K.; Lim, S.C.; Kim, H.S. Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Compos. Part B Eng. 2019, 161, 586–594. [Google Scholar] [CrossRef]
- Minsky, M.; Papert, S. Perceptrons: An introduction to computational geometry, expanded edition. Editor. MIT Pres. Libro Publ. 1987, 28, 308. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [Green Version]
- Allegrini, F.; Olivieri, A.C. Sensitivity, prediction uncertainty, and detection limit for artificial neural network calibrations. Anal. Chem. 2016, 88, 7807–7812. [Google Scholar] [CrossRef] [Green Version]
- Roosta, A.; Setoodeh, P.; Jahanmiri, A. Artificial neural network modeling of surface tension for pure organic compounds. Ind. Eng. Chem. Res. 2012, 51, 561–566. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, W.; Mei, D. Artificial Neural Network Potential for Encapsulated Platinum Clusters in MOF-808. J. Phys. Chem. C 2022, 126, 1204–1214. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Tian, Y.; Wan, Y.; Zhang, L.; Chu, G.; Fisher, A.C.; Zou, H. Optimized Artificial Neural Network for Evaluation: C4 Alkylation Process Catalyzed by Concentrated Sulfuric Acid. ACS Omega 2021, 7, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Verma, J. In silico prediction of blood brain barrier permeability: An artificial neural network model. J. Chem. Inf. Modeling 2006, 46, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Shokir, E.M.E.-M.; Hamed, M.M.; Ibrahim, A.E.-S.; Mahgoub, I. Gas lift optimization using artificial neural network and integrated production modeling. Energy Fuels 2017, 31, 9302–9307. [Google Scholar] [CrossRef]
- Askland, K.D.; Garnaat, S.; Sibrava, N.J.; Boisseau, C.L.; Strong, D.; Mancebo, M.; Greenberg, B.; Rasmussen, S.; Eisen, J. Prediction of remission in obsessive compulsive disorder using a novel machine learning strategy. Int. J. Methods Psychiatr. Res. 2015, 24, 156–169. [Google Scholar] [CrossRef]
- Shao, M.; Zhu, X.-J.; Cao, H.-F.; Shen, H.-F. An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system. Energy 2014, 67, 268–275. [Google Scholar] [CrossRef]
- Gao, S.; Liao, Q.; Liu, W.; Liu, Z. Effects of solid fraction on droplet wetting and vapor condensation: A molecular dynamic simulation study. Langmuir 2017, 33, 12379–12388. [Google Scholar] [CrossRef]
- Bin Saleman, A.R.; Chilukoti, H.K.; Kikugawa, G.; Shibahara, M.; Ohara, T. A molecular dynamics study on the thermal transport properties and the structure of the solid–liquid interfaces between face centered cubic (FCC) crystal planes of gold in contact with linear alkane liquids. Int. J. Heat Mass Transf. 2017, 105, 168–179. [Google Scholar] [CrossRef]
- Fan, H.B.; Yuen, M.M. Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 2007, 48, 2174–2178. [Google Scholar] [CrossRef]
- Materials Studio 2019; BIOVIA: San Diego, CA, USA, 2019.
- Pastor, R.W. Molecular dynamics and Monte Carlo simulations of lipid bilayers. Curr. Opin. Struct. Biol. 1994, 4, 486–492. [Google Scholar] [CrossRef]
- Riccardi, C.; Adabbo, H.; Williams, R. Curing reaction of epoxy resins with diamines. J. Appl. Polym. Sci. 1984, 29, 2481–2492. [Google Scholar] [CrossRef]
- Lee, J.; Choi, H.; Shim, M.; Kim, S. Effects of CTBN on the cure characteristics of DGEBA/MDA/PGE-AcAm system. Mater. Chem. Phys. 1998, 52, 272–276. [Google Scholar] [CrossRef]
- Jin, K.; Luo, H.; Wang, Z.; Wang, H.; Tao, J. Composition optimization of a high-performance epoxy resin based on molecular dynamics and machine learning. Mater. Des. 2020, 194, 108932. [Google Scholar] [CrossRef]
- Rogge, S.; Vanduyfhuys, L.; Ghysels, A.; Waroquier, M.; Verstraelen, T.; Maurin, G.; Van Speybroeck, V. A comparison of barostats for the mechanical characterization of metal–organic frameworks. J. Chem. Theory Comput. 2015, 11, 5583–5597. [Google Scholar] [CrossRef] [Green Version]
- Tuckerman, M.; Berne, B.J.; Martyna, G.J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992, 97, 1990–2001. [Google Scholar] [CrossRef] [Green Version]
- Yeon, J.; Chowdhury, S.C.; Daksha, C.M.; Gillespie, J.W., Jr. Development of Mg/Al/Si/O ReaxFF Parameters for Magnesium Aluminosilicate Glass Using an Artificial Neural Network-Assisted Genetic Algorithm. J. Phys. Chem. C 2021, 125, 18380–18394. [Google Scholar] [CrossRef]
- Chen, H.-A.; Pao, C.-W. Fast and accurate artificial neural network potential model for MAPbI3 perovskite materials. ACS Omega 2019, 4, 10950–10959. [Google Scholar] [CrossRef] [Green Version]
- Allam, O.; Cho, B.W.; Kim, K.C.; Jang, S.S. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries. RSC Adv. 2018, 8, 39414–39420. [Google Scholar] [CrossRef] [Green Version]
- Pruksawan, S.; Lambard, G.; Samitsu, S.; Sodeyama, K.; Naito, M. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. Sci. Technol. Adv. Mater. 2019, 20, 1010–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Motoda, H. Feature Selection for Knowledge Discovery and Data Mining; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 454. [Google Scholar]
- Kang, H.; Lee, J.H.; Choe, Y.; Lee, S.G. Prediction of Lap Shear Strength and Impact Peel Strength of Epoxy Adhesive by Machine Learning Approach. Nanomaterials 2021, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Hennig, P.; Kiefel, M. Quasi-Newton methods: A new direction. J. Mach. Learn. Res. 2013, 14, 843–865. [Google Scholar]
- Neural Designer; v.2.90; Artelnics: Salamanca, Spain, 2018.
Sample | DGEBA | DGEBF | TGAP | TGMDA | 33DDS | 44 DDS | DICY | Crosslinking Degree (%) | Density (g/cm3) | Cohesive Energy Density (J/cm3) | Free Volume (%) | Glass Transition Temperature (K) | Modulus (GPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0.5 | 0 | 0 | 93 | 1.146 | 428.2 | 0.085 | 500 | 2.499 |
2 | 1 | 0 | 0 | 0 | 0 | 0.5 | 0 | 90 | 1.154 | 420.6 | 0.087 | 569 | 1.908 |
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 93 | 1.129 | 460.3 | 0.071 | 420 | 1.820 |
4 | 0 | 1 | 0 | 0 | 0.5 | 0 | 0 | 93 | 1.198 | 446.5 | 0.084 | 478 | 2.415 |
5 | 0 | 1 | 0 | 0 | 0 | 0.5 | 0 | 93 | 1.163 | 445.8 | 0.092 | 531 | 2.053 |
6 | 0 | 1 | 0 | 0 | 0 | 0 | 0.5 | 91 | 1.194 | 490.9 | 0.066 | 530 | 2.235 |
7 | 0 | 0 | 1 | 0 | 0.75 | 0 | 0 | 90 | 1.228 | 429.5 | 0.110 | 450 | 3.717 |
8 | 0 | 0 | 1 | 0 | 0 | 0.75 | 0 | 92 | 1.185 | 433.6 | 0.120 | 550 | 3.101 |
9 | 0 | 0 | 1 | 0 | 0 | 0 | 0.75 | 93 | 1.220 | 506.2 | 0.106 | 450 | 4.522 |
10 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 93 | 1.184 | 400.1 | 0.108 | 490 | 3.785 |
11 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 92 | 1.207 | 398.6 | 0.105 | 400 | 4.347 |
12 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 91 | 1.220 | 453.1 | 0.088 | 520 | 5.221 |
13 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 93 | 1.174 | 436.2 | 0.034 | 570 | 2.151 |
14 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 93 | 1.166 | 439.1 | 0.033 | 550 | 1.969 |
15 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 93 | 1.156 | 476.5 | 0.028 | 470 | 2.024 |
16 | 1 | 0 | 1 | 0 | 1.25 | 0 | 0 | 93 | 1.173 | 427.2 | 0.043 | 540 | 2.797 |
17 | 1 | 0 | 1 | 0 | 0 | 1.25 | 0 | 92 | 1.162 | 426.4 | 0.046 | 520 | 2.072 |
18 | 1 | 0 | 1 | 0 | 0 | 0 | 1.25 | 91 | 1.172 | 482.8 | 0.029 | 530 | 3.271 |
19 | 1 | 0 | 0 | 1 | 1.5 | 0 | 0 | 93 | 1.169 | 407.2 | 0.041 | 480 | 3.126 |
20 | 1 | 0 | 0 | 1 | 0 | 1.5 | 0 | 90 | 1.197 | 406.9 | 0.043 | 570 | 3.818 |
21 | 1 | 0 | 0 | 1 | 0 | 0 | 1.5 | 93 | 1.190 | 459.2 | 0.032 | 520 | 4.403 |
22 | 0 | 1 | 1 | 0 | 1.25 | 0 | 0 | 93 | 1.203 | 441.2 | 0.044 | 490 | 3.127 |
23 | 0 | 1 | 1 | 0 | 0 | 1.25 | 0 | 91 | 1.192 | 437.9 | 0.050 | 560 | 2.041 |
24 | 0 | 1 | 1 | 0 | 0 | 0 | 1.25 | 93 | 1.201 | 503.2 | 0.035 | 510 | 4.514 |
25 | 0 | 1 | 0 | 1 | 1.5 | 0 | 0 | 92 | 1.191 | 422.1 | 0.047 | 490 | 3.100 |
26 | 0 | 1 | 0 | 1 | 0 | 1.5 | 0 | 91 | 1.170 | 416.9 | 0.045 | 510 | 3.270 |
27 | 0 | 1 | 0 | 1 | 0 | 0 | 1.5 | 91 | 1.188 | 477.6 | 0.032 | 550 | 5.079 |
28 | 0 | 0 | 1 | 1 | 1.75 | 0 | 0 | 93 | 1.199 | 414.6 | 0.054 | 530 | 4.963 |
29 | 0 | 0 | 1 | 1 | 0 | 1.75 | 0 | 93 | 1.202 | 414.3 | 0.054 | 540 | 4.757 |
30 | 0 | 0 | 1 | 1 | 0 | 0 | 1.75 | 91 | 1.198 | 479.3 | 0.044 | 550 | 4.454 |
31 | 2 | 0 | 1 | 0 | 1.75 | 0 | 0 | 90 | 1.182 | 425.3 | 0.029 | 510 | 2.254 |
32 | 2 | 0 | 1 | 0 | 0 | 1.75 | 0 | 93 | 1.162 | 426.6 | 0.039 | 570 | 3.891 |
33 | 2 | 0 | 1 | 0 | 0 | 0 | 1.75 | 93 | 1.163 | 475.1 | 0.032 | 550 | 3.382 |
34 | 2 | 0 | 0 | 1 | 2 | 0 | 0 | 92 | 1.163 | 412.0 | 0.039 | 520 | 4.876 |
35 | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 93 | 1.163 | 413.1 | 0.038 | 500 | 4.410 |
36 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 92 | 1.171 | 454.0 | 0.032 | 560 | 4.356 |
37 | 0 | 2 | 1 | 0 | 1.75 | 0 | 0 | 93 | 1.176 | 446.3 | 0.043 | 450 | 2.389 |
38 | 0 | 2 | 1 | 0 | 0 | 1.75 | 0 | 91 | 1.191 | 438.7 | 0.042 | 490 | 3.126 |
39 | 0 | 2 | 1 | 0 | 0 | 0 | 1.75 | 92 | 1.186 | 497.6 | 0.034 | 540 | 3.514 |
40 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 93 | 1.188 | 425.3 | 0.036 | 560 | 2.295 |
41 | 0 | 2 | 0 | 1 | 0 | 2 | 0 | 93 | 1.195 | 421.0 | 0.035 | 500 | 3.783 |
42 | 0 | 2 | 0 | 1 | 0 | 0 | 2 | 93 | 1.200 | 484.8 | 0.029 | 550 | 4.411 |
43 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 93 | 1.210 | 427.2 | 0.043 | 540 | 4.178 |
44 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 93 | 1.205 | 427.1 | 0.042 | 550 | 4.510 |
45 | 1 | 0 | 2 | 0 | 0 | 0 | 2 | 91 | 1.202 | 490.3 | 0.029 | 540 | 4.858 |
46 | 1 | 0 | 0 | 2 | 2.5 | 0 | 0 | 92 | 1.188 | 403.9 | 0.037 | 510 | 5.310 |
47 | 1 | 0 | 0 | 2 | 0 | 2.5 | 0 | 92 | 1.168 | 404.4 | 0.044 | 550 | 5.041 |
48 | 1 | 0 | 0 | 2 | 0 | 0 | 2.5 | 92 | 1.157 | 458.5 | 0.039 | 500 | 5.321 |
49 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 93 | 1.184 | 434.0 | 0.049 | 550 | 3.256 |
50 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 93 | 1.201 | 435.5 | 0.051 | 460 | 5.167 |
51 | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 93 | 1.236 | 504.1 | 0.043 | 510 | 4.876 |
52 | 0 | 1 | 0 | 2 | 2.5 | 0 | 0 | 92 | 1.172 | 410.1 | 0.047 | 540 | 4.847 |
53 | 0 | 1 | 0 | 2 | 0 | 2.5 | 0 | 90 | 1.176 | 411.0 | 0.047 | 540 | 5.009 |
54 | 0 | 1 | 0 | 2 | 0 | 0 | 2.5 | 93 | 1.190 | 465.2 | 0.037 | 490 | 5.311 |
Cohesive Energy Density | Modulus | Glass Transition Temperature | ||||
---|---|---|---|---|---|---|
Training Sample | Test Sample | Training Sample | Test Sample | Training Sample | Test Sample | |
RMSE | 1.413 | 1.124 | 0.223 | 0.346 | 1.811 | 2.581 |
NSE | 0.153 | 0.039 | 0.075 | 0.103 | 0.209 | 0.395 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Kang, H.; Lee, J.H.; Kwon, S.H.; Lee, S.G. Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations. Nanomaterials 2022, 12, 2353. https://doi.org/10.3390/nano12142353
Choi J, Kang H, Lee JH, Kwon SH, Lee SG. Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations. Nanomaterials. 2022; 12(14):2353. https://doi.org/10.3390/nano12142353
Chicago/Turabian StyleChoi, Joohee, Haisu Kang, Ji Hee Lee, Sung Hyun Kwon, and Seung Geol Lee. 2022. "Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations" Nanomaterials 12, no. 14: 2353. https://doi.org/10.3390/nano12142353
APA StyleChoi, J., Kang, H., Lee, J. H., Kwon, S. H., & Lee, S. G. (2022). Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations. Nanomaterials, 12(14), 2353. https://doi.org/10.3390/nano12142353