A Single Cell Extraction Chip Using Vibration-Induced Whirling Flow and a Thermo-Responsive Gel Pattern
Abstract
:1. Introduction
2. Concept
2.1. Cell Transport by Vibration-Induced Whirling Flow
2.2. Single Cell Catcher by Thermo-Responsive Gel Pattern
2.3. Concept of Single Cell Extraction System
- (i)
- Transport: Drop a sample cell suspension on the chip, and apply circular vibration (Figure 3b). Circular vibration induces a global whirling flow directed towards the center of the spiral, and the dropped cells are transported there. By turning on the microheater, the hole of the single cell catcher is opened. When the single cell transported to the center of the hole is detected by the microscope, the circular vibration is turned off and the single cell is trapped in the hole.
- (ii)
- Catch: Turn off the microheater to swell the single cell catcher. The single cell catcher is cooled by the ambient temperature, and the trapped cell is caught by the swelled single cell catcher. Then, cells that have not been caught are removed by washing the chip with phosphate buffered saline.
- (iii)
- Release: Prepare a microtiter plate and fill the wells on the plate with culture medium. Put the inverted single cell extraction chip on the wells and turn on the microheater (Figure 3c). The single cell catcher is shrunk again by the heating, and the caught cell is released into the well. Thus, the single cell extraction is achieved by the proposed chip.
3. Fabrication Process
- Sputtering of Cr/Au on a glass substrate.
- Spin coating of OFPR (Tokyo Ohka Kogyo Co. Ltd., Tokyo, Japan) on the sputtered Cr/Au layer.
- Exposure and development of the OFPR as an etching mask of the microheater.
- Etching Cr/Au and removal of the OFPR.
- Spin coating the bioresist on the patterned microheater.
- Exposure and development of the bioresist as a single cell catcher.
- Spin coating SU-8.
- Exposure and development of SU-8 as a micropillar array.
4. Analysis and Design
4.1. Analysis of Vibration-Induced Local Whirling Flow
4.2. Design of the Micropillar Array for Cell Transport
4.3. Design of the Single Cell Catcher
5. Results and Discussion
6. Conclusions
Supplementary Materials
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, D.; Bodovitz, S. Single cellanalysis: the new frontier in ‘omics’. Trends Biotechnol. 2010, 28, 281–290. [Google Scholar]
- Narsinh, K.H.; Sun, N.; Sanchez-Freire, V.; Lee, A.S.; Almeida, P.; Hu, S.; Jan, T.; Wilson, K.D.; Leong, D.; Rosenberg, J.; Yao, M.; Robbins, R.C.; Wu, J.C. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J. Clin. Investig. 2011, 121, 1217–1221. [Google Scholar]
- Hulett, H.R.; Bonner, W.A.; Barrett, J.; Herzenberg, L.A. Cell sorting: Automated separation of mammalian cells as a function of intracellular fluorescence. Science 1969, 166, 747–749. [Google Scholar]
- Bonner, W.A.; Hulett, H.R.; Sweet, R.G.; Herzenberg, L.A. Fluorescence activated cell sorting. Rev. Sci. Instrum. 1972, 43, 404–409. [Google Scholar]
- Huh, D.; Gu, W.; Kamotani, Y.; Grotberg, J.B.; Takayama, S. Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 2005, 26, R73–R98. [Google Scholar]
- Fu, A.Y.; Spence, C.; Scherer, A.; Arnold, F.H.; Quake, S.R. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 1999, 17, 1109–1111. [Google Scholar]
- Yamada, M.; Nakashima, M.; Seki, M. Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. 2004, 76, 5465–5471. [Google Scholar]
- Mach, A.J.; Kim, J.H.; Arshi, A.; Hur, S.C.; Carlo, D.D. Automated cellular sample preparation using a centrifuge-on-a-chip. Lab Chip 2011, 11, 2827–2834. [Google Scholar]
- Tan, W.H.; Takeuchi, S. A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc. Natl. Acad. Sci. USA 2007, 104, 1146–1151. [Google Scholar]
- Arai, F.; Ichikawa, A.; Fukuda, T.; Katsuragi, T. Isolation and extraction of target microbes using thermal sol-gel transformation. Analyst 2003, 128, 547–551. [Google Scholar]
- Arai, F.; Ng, C.; Maruyama, H.; Ichikawa, A.; El-Shimy, H.; Fukuda, T. On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab Chip 2005, 5, 1399–1403. [Google Scholar]
- Ashkin, A.; Dziedzic, J.M. Optical trapping and manipulation of viruses and bacteria. Science 1987, 235, 1517–1520. [Google Scholar]
- Arai, F.; Ichikawa, A.; Ogawa, M.; Fukuda, T.; Horio, K.; Itoigawa, K. High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis 2001, 22, 283–288. [Google Scholar]
- Eriksson, E.; Sott, K.; Lundqvist, F.; Sveningsson, M.; Scrimgeour, J.; Hanstorp, D.; Goksör, M.; Granéli, A. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip 2010, 10, 617–625. [Google Scholar]
- Pethig, R. Review article —Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 2010, 4, 022811. [Google Scholar]
- Chiou, P.Y.; Ohta, A.T.; Wu, M.C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 2005, 436, 370–372. [Google Scholar]
- Voldman, J.; Gray, M.L.; Toner, M.; Schmidt, M.A. A microfabrication-based dynamic array cytometer. Anal. Chem. 2002, 74, 3984–3990. [Google Scholar]
- Ding, X.; Li, P.; Lin, S.C.S.; Stratton, Z.S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X.; Shi, J.; Costanzoa, F.; Huang, T.J. Surface acoustic wave microfluidics. Lab Chip 2013, 13, 3626–3649. [Google Scholar]
- Yeo, L.Y.; Friend, J.R. Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 2009, 3, 012002. [Google Scholar]
- Holtsmard, J.; Johnsen, I.; Sikkeland, T.; Skavlem, S. Boundary layer flow near a cylindrical obstacle in an oscillating imcompressible fluid. J. Acoust. Soc. Am. 1945, 26, 26–39. [Google Scholar]
- Wand, C.; Drachman, B. The steady streaming generated by a vibrating plate parallel to a fixed plate. Appl. Sci. Res. 1982, 39, 55–68. [Google Scholar]
- Lutz, B.R.; Chen, J.; Schwartz, D.T. Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 2006, 78, 5429–5435. [Google Scholar]
- Hagiwara, M.; Kawahara, T.; Arai, F. Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations. Appl. Phys. Lett. 2012, 101, 074102. [Google Scholar]
- Yokoyama, Y.; Umezaki, M.; Kishioka, T.; Tamiya, E.; Takamura, Y. Micro- and nano-fabrication of stimulus-responsive polymer using nanoimprint lithography. J. Photopolym. Sci. Technol. 2011, 24, 63–70. [Google Scholar]
- Ito, K.; Sakuma, S.; Yokoyama, Y.; Arai, F. On-chip gel-valve using photoprocessable thermoresponsive gel. ROBOMECH J. 2014. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hayakawa, T.; Sakuma, S.; Fukuhara, T.; Yokoyama, Y.; Arai, F. A Single Cell Extraction Chip Using Vibration-Induced Whirling Flow and a Thermo-Responsive Gel Pattern. Micromachines 2014, 5, 681-696. https://doi.org/10.3390/mi5030681
Hayakawa T, Sakuma S, Fukuhara T, Yokoyama Y, Arai F. A Single Cell Extraction Chip Using Vibration-Induced Whirling Flow and a Thermo-Responsive Gel Pattern. Micromachines. 2014; 5(3):681-696. https://doi.org/10.3390/mi5030681
Chicago/Turabian StyleHayakawa, Takeshi, Shinya Sakuma, Takeshi Fukuhara, Yoshiyuki Yokoyama, and Fumihito Arai. 2014. "A Single Cell Extraction Chip Using Vibration-Induced Whirling Flow and a Thermo-Responsive Gel Pattern" Micromachines 5, no. 3: 681-696. https://doi.org/10.3390/mi5030681
APA StyleHayakawa, T., Sakuma, S., Fukuhara, T., Yokoyama, Y., & Arai, F. (2014). A Single Cell Extraction Chip Using Vibration-Induced Whirling Flow and a Thermo-Responsive Gel Pattern. Micromachines, 5(3), 681-696. https://doi.org/10.3390/mi5030681