Plasmid DNA Complexes in Powder Form Studied by Spectroscopic and Diffraction Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Conclusions
- The DNA conformation in all three plasmid DNA complexes was found to be predominantly of the A type, although the plasmid DNA used to form the complexes was most likely a mixture of three conformations (A-DNA, B-DNA and Z-DNA) with B and A as the predominant forms. After complexation, the A-DNA double-helix form predominated in plasmid-based pDNA complexes, similarly to complexes based on linear dsDNA (although linear dsDNA with a predominant B-DNA form was used [20]).
- The pDNA helices in all studied complexes were locally packed into a hexagonal lattice, similarly to what was found in complexes of linear DNA with these surfactants (BAC, CTMA and HDP) [20]. The fact that the plasmid DNA was in a form of a closed loop did not prevent the hexagonal packing because the length of the used DNA (320 nm) was almost two orders of magnitude larger than the distances between neighbouring helices (3.7–4.0 nm).
- In contrast to linear DNA complexes studied by us earlier [20], two relaxation processes were revealed for plasmid DNA complexes (contributions to total conductivity coming from conductivity of the crystallites (grain interior) and from conductivity of the grain boundaries). The relaxation process in the crystallites revealed for all the studied complexes was interpreted as an oscillation of the polar surfactant head groups and seemed to be independent of the molecular weight of the cationic surfactant but dependent on the conformation of the surfactant chain.
- The dielectric absorption changed in a completely different way for complexes based on plasmid pDNA and linear dsDNA. It increased with decreasing frequency for all the pDNA-based complexes, whereas it was constant over the entire frequency range for all the dsDNA-based complexes [20]. Moreover, the dielectric absorption for pDNA–HDP was about 3000 higher than that for for dsDNA–HDP.
- The specific electric conductivity depended on the surfactant forming the complexes based on plasmid pDNA, as it was found earlier for linear dsDNA. In addition, it seems that the conformation of the BAC chains caused σ’ to be the lowest for complexes with the BAC surfactant for both linear dsDNA and plasmid pDNA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Watson, J.D.; Crick, F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.M.; Hausman, R.E. The Cell: A Molecular Approach, 6th ed.; Sinauer Associates: Sunderland, MA, USA, 2007; Volume 4. [Google Scholar]
- Ghosh, A.; Bansal, M. A glossary of DNA structures from A to Z. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 59, 620. [Google Scholar] [CrossRef] [PubMed]
- Kado, C. Origin and evolution of plasmids. Antonie Leeuwenhoek 1998, 73, 117. [Google Scholar] [CrossRef] [PubMed]
- Mielke, C.; Benham, S. DNA mechanics. Annu. Rev. Biomed. Eng. 2005, 7, 21. [Google Scholar]
- Baker-Jarvis, J.; Jones, C.A.; Riddle, B. Electrical Properties and Dielectric Relaxation of DNA in Solution; NIST Technical Note 1509; NIST: Boulder, CO, USA, 1998. [Google Scholar]
- Heckman, E.M.; Hagen, J.A.; Yaney, P.P.; Grote, J.G.; Hopkins, F.K. Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications. Appl. Phys. Lett. 2005, 87, 211115. [Google Scholar] [CrossRef]
- Steckl, A.J. DNA—A new material for photonics? Nat. Photonics 2007, 1, 3. [Google Scholar] [CrossRef]
- Yumusak, C.; Singh, T.B.; Sariciftci, N.S.; Grote, J.G. Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric. Appl. Phys. Lett. 2009, 95, 263304. [Google Scholar] [CrossRef]
- Kwon, Y.-W.; Lee, C.H.; Choi, D.-H.; Jin, J.-I. Materials science of DNA. J. Mater. Chem. 2009, 19, 1353. [Google Scholar] [CrossRef]
- Singh, T.B.; Sariciftci, N.S.; Grote, J.G. Bio-Organic Optoelectronic Devices Using DNA. In Organic Electronics; Advances in Polymer Science; Grasser, T., Meller, G., Li, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 223, p. 73. [Google Scholar]
- Chi, Q.; Yang, Z.; Xu, K.; Wang, C.; Liang, H. DNA Nanostructure as an Efficient Drug Delivery Platform for Immunotherapy. Front. Pharmacol. 2020, 10, 1585. [Google Scholar] [CrossRef]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607. [Google Scholar] [CrossRef]
- Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998, 391, 775. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, Y.; Wang, L.; Horinouchi, S.; Ogata, N. Amplified Spontaneous Emission from Fluorescent-Dye-Doped DNA–Surfactant Complex Films. Adv. Mater. 2000, 12, 1281. [Google Scholar] [CrossRef]
- Singh, B.; Sariciftci, N.S.; Grote, J.G.; Hopkins, F.K. Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric. J. Appl. Phys. 2006, 100, 024514. [Google Scholar] [CrossRef]
- Yukimoto, T.; Uemura, S.; Kamata, T.; Nakamura, K.; Kobayashi, N. Non-volatile transistor memory fabricated using DNA and eliminating influence of mobile ions on electric properties. J. Mater. Chem. 2011, 21, 15575. [Google Scholar] [CrossRef]
- LaBoda, C.; Duschl, H.; Dwyer, C.L. DNA-Enabled Integrated Molecular Systems for Computation and Sensing. Acc. Chem. Res. 2014, 47, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Benenson, Y.; Adar, R.; Paz-Elizur, T.; Livneh, Z.; Shapiro, E. DNA molecule provides a computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA 2003, 100, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- Radko, A.; Lalik, S.; Deptuch, A.; Jaworska-Gołąb, T.; Ekiert, R.; Górska, N.; Makyła-Juzak, K.; Nizoł, J.; Marzec, M. Physicochemical characterization of the DNA complexes with different surfactants. Polymer 2021, 235, 124277. [Google Scholar] [CrossRef]
- Radko, A.; Nizioł, J.; Makyła-Juzak, K.; Ekiert, R.; Górska, N.; Górecki, A.; Marzec, M. Properties of DNA-CTMA monolayers obtained by Langmuir-Blodgett technique. Mater. Sci. Eng. B 2021, 263, 114859. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodriguez-Carvajal, J. WinPLOTR: A Windows tool for powder diffraction patterns analysis. In Proceedings of the Seventh European Powder Diffraction Conference, Barcelona, Spain, 20–23 May 2000. [Google Scholar]
- Taillandier, E.; Peticolas, W.L.; Adam, S.; Huynh-Dinh, T.; Igolen, J. Polymorphism of the d(CCCGCGGG)2 double helix studied by FT-IR spectroscopy. Spectrochim. Acta 1990, 46A, 107–112. [Google Scholar] [CrossRef]
- Taillandier, E.; Liquier, J. Infrared spectroscopy of DNA. Methods Enzymol. 1992, 211, 307–335. [Google Scholar]
- Sofińska, K.; Wilkosz, N.; Szymoński, M.; Lipiec, E. Molecular spectroscopic markers of DNA damage. Molecules 2020, 25, 561. [Google Scholar] [CrossRef] [PubMed]
- Arkhangelskya, E.; Sefib, Y.; Hajajb, B.; Rothenbergc, G.; Gitis, V. Kinetics and mechanism of plasmid DNA penetration through nanopores. J. Membr. Sci. 2011, 371, 45–51. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. J. Chem. Phys. 1941, 9, 341. [Google Scholar] [CrossRef]
- Michalska, M.; Ławniczak, P.; Strachowski, T.; Ostrowski, A.; Bednarski, W. Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis. Beilstein J. Nanotechnol. 2022, 13, 1473–1482. [Google Scholar] [CrossRef]
Sample | Thickness [mm] |
---|---|
pDNA–BAC | 0.30(1) |
pDNA–HDP | 0.35(1) |
pDNA–CTMA | 0.35(1) |
pDNA | CTMA | HDP | BAC | pDNA–CTMA | pDNA–HDP | pDNA–BAC | Assignment |
---|---|---|---|---|---|---|---|
719 shp | 717 shp | 723 shp | 724 br | 722 br | 725 br | ρ(CH2)al,n | |
801 A | 800 A | 800 A | 801 A | Sugar—phosphate backbone | |||
832 B | 822 B | 825 B | 823 B | Sugar—phosphate backbone | |||
860 A | – | – | – | Sugar—phosphate backbone | |||
962 B | 960 | 957 | 960 | ν(C-C) of DNA backbone | |||
~1015 sh | 1011 shp | 1009 sh | 1010 shp | Furanose ring | |||
1063 | 1062 | 1062 | 1062 | ν(C-O) phosphodiester linkage | |||
1088 | 1094 | 1092 | 1091 | νs(PO2−) | |||
1176 A | 1168 A | 1172 A | 1166 A | Sugar base | |||
1208 Z | – | 1201 Z | 1201 Z | νas(PO2−) | |||
1238 A | 1243 A | 1246 A | 1244 A | νas(PO2−) | |||
~1284 B | 1274 A | 1278 A | 1278 A | Sugar base (T) | |||
1418 B | 1418 B | 1415 B or Z | 1415 B or Z | Sugar—phosphate backbone | |||
1471 | 1472 | 1471 | 1470 | 1468 | 1467 | ν(C=C)ar | |
1508 | 1490 | 1485 | 1504 | 1484 | ν(C=C)ar or base ring | ||
1531 | 1527 | 1528 | 1531 | Deoxycytidine | |||
1696 | 1690 | 1690 | 1689 | Base double bond stretch | |||
2849 | 2849 | 2852 | 2854 | 2853 | 2854 | νs(CH2)al | |
2917 | 2914 | 2921 | 2925 | 2925 | 2924 | νas(CH2)al |
Low-Angle Peak | Peak at ca. 20° | |||
---|---|---|---|---|
2θ [deg] | d [nm] | 2θ [deg] | d [nm] | |
pDNA–CTMA | 2.77(1) | 3.19(2) | 19.69(3) | 0.46(1) |
pDNA–BAC | 2.52(1) | 3.50(2) | 19.88(2) | 0.45(2) |
pDNA–HDP | 2.60(1) | 3.39(2) | 20.54(2) | 0.44(2) |
f = 0.5 Hz | f = 50.0 Hz | |||
---|---|---|---|---|
ε′ | σ′ [pS/cm] | ε′ | σ′ [pS/cm] | |
pDNA–BAC | 3.85 | 2.55 | 2.44 | 7.68 |
pDNA–CTMA | 13.25 | 14.57 | 4.11 | 47.79 |
pDNA–HDP | 217.72 | 1019.8 | 21.87 | 1388.70 |
pDNA–BAC | pDNA–CTMA | pDNA–HDP | |
---|---|---|---|
R1 [GΩ] | 7.10 ± 0.07 | 1.24 ± 0.02 | (39.77 ± 0.09) · 10−3 |
τ1 [s] | 0.2204 ± 0.0049 | 0.0761 ± 0.0015 | (2.2321 ± 0.0004) · 10−3 |
C1 [pF] | 31.04 ± 0.25 | 61.35 ± 0.65 | 303.83 ± 1.18 |
α1 | 0 | 0 | 0.277 ± 0.002 |
R2 [GΩ] | 9.81 ± 0.04 | 1.62 ± 0.01 | (5.93 ± 0.05) · 10−3 |
τ2 [s] | 0.0769 ± 0.0021 | 0.0181 ± 0.0005 | (2.6998 ± 0.0002) · 10−4 |
C2 [pF] | 9.65 ± 0.05 | 20.74 ± 0.15 | 124.86 ± 3.13 |
α2 | 0.081 ± 0.001 | 0.154 ± 0.003 | 0.124 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radko, A.; Lalik, S.; Górska, N.; Deptuch, A.; Świergiel, J.; Marzec, M. Plasmid DNA Complexes in Powder Form Studied by Spectroscopic and Diffraction Methods. Materials 2024, 17, 3530. https://doi.org/10.3390/ma17143530
Radko A, Lalik S, Górska N, Deptuch A, Świergiel J, Marzec M. Plasmid DNA Complexes in Powder Form Studied by Spectroscopic and Diffraction Methods. Materials. 2024; 17(14):3530. https://doi.org/10.3390/ma17143530
Chicago/Turabian StyleRadko, Aleksandra, Sebastian Lalik, Natalia Górska, Aleksandra Deptuch, Jolanta Świergiel, and Monika Marzec. 2024. "Plasmid DNA Complexes in Powder Form Studied by Spectroscopic and Diffraction Methods" Materials 17, no. 14: 3530. https://doi.org/10.3390/ma17143530
APA StyleRadko, A., Lalik, S., Górska, N., Deptuch, A., Świergiel, J., & Marzec, M. (2024). Plasmid DNA Complexes in Powder Form Studied by Spectroscopic and Diffraction Methods. Materials, 17(14), 3530. https://doi.org/10.3390/ma17143530