Meteorological Data Warehousing and Analysis for Supporting Air Navigation
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Description of the Dataset
3.2. The DW Design
4. Experimental Study
ETL Process
5. Results and Discussion
5.1. Data Querying
- Query 1: Delays and cancellations depending on the wind factor per airport
- Query 2: Delays and cancellations depending on precipitation factor per airport
- Query 3: Delays and cancellations depending on temperature factor per airport
5.2. Intelligent Data Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsoni, R.; Garani, G.; Verykios, V.S. Incorporating Data Warehouses into Data Pipelines for Deploying Learning Analytics Dashboards. In Proceedings of the 13th International Conference on Information, Intelligence, Systems and Applications (IISA 2022), Corfu, Greece, 18–20 July 2022. [Google Scholar]
- Inmon, W.H. Building the Data Warehouse, 4th ed.; Wiley Publishing: Indianapolis, IA, USA, 2005; pp. 29–33. [Google Scholar]
- Petricioli, L.; Humski, L.; Vrdoljak, B. The Challenges of NoSQL Data Warehousing. In Proceedings of the International Conference on E-Business Technologies, Belgrade, Serbia, 21–23 September 2021; pp. 44–48. [Google Scholar]
- Oza, S.; Sharma, S.; Sangoi, H.; Raut, R.; Kotak, V.C. Flight Delay Prediction System Using Weighted Multiple Linear Regression. Int. J. Comput. Sci. Eng. 2015, 4, 11668–11677. [Google Scholar]
- Choi, S.; Kim, Y.J.; Briceno, S.; Mavris, D. Prediction of weather-induced airline delays based on machine learning algorithms. In Proceedings of the IEEE/AIAA 35th Digital Avionics Systems Conference, Sacramento, CA, USA, 25–29 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Borse, Y.; Jain, D.; Sharma, S.; Vora, V.; Zaveri, A. Flight Delay Prediction System. Int. J. Eng. Res. Technol. 2020, 9, 88–92. [Google Scholar] [CrossRef]
- Gui, G.; Liu, F.; Sun, J.; Yang, J.; Zhou, Z.; Zhao, D. Flight Delay Prediction Based on Aviation Big Data and Machine Learning. IEEE Trans. Veh. Technol. 2020, 69, 140–150. [Google Scholar] [CrossRef]
- Somani, S.; Pandey, P.; Sharma, M.; Safa, M. An Approach of Applying Machine Learning Model in Flight Delay Prediction-A Comparative Analysis. Geintec 2021, 11, 1233–1244. [Google Scholar] [CrossRef]
- Lu, M.; Wei, P.; Hem, M.; Teng, Y. Flight Delay Prediction Using Gradient Boosting Machine Learning Classifiers. Int. J. Quantum Inf. 2021, 3, 1. [Google Scholar] [CrossRef]
- Carvalho, L.; Sternberg, A.; Gonçalves, L.M.; Cruz, A.B.; Soares, J.A.; Brandão, D.; Carvalho, D.; Ogasawara, E. On the relevance of data science for flight delay research: A systematic review. Transp. Rev. 2021, 41, 499–528. [Google Scholar] [CrossRef]
- Häberli, C.; Tombros, D. A Data Warehouse Architecture for MeteoSwiss: An Experience Report. In Proceedings of the International Workshop on Design and Management of Data Warehouses, Interlaken, Switzerland, 4–8 June 2001; pp. 9.1–9.6. [Google Scholar]
- Velázquez-Álvarez, J.; Torres-Jiménez, J. Design and implementation of a climatic data Warehouse. In Data Mining III; Zanasi, A., Brebbia, C.A., Ebecken, N.F.F., Melli, P., Eds.; WIT Press: Southampton, UK, 2002; Volume 28, pp. 407–416. [Google Scholar] [CrossRef] [Green Version]
- Kalra, G.; Steiner, D. Weather Data Warehouse: An Agent-Based Data Warehousing System. In Proceedings of the 38th Hawaii International Conference on System Sciences, Big Island, Hawaii, 3–6 January 2005. [Google Scholar] [CrossRef]
- Dimri, P.; Gunwant, H. Conceptual Model for Developing Meteorological Data Warehouse in Uttarakhand-A Review. J. Inform. Oper. Manag. 2012, 3, 107–110. [Google Scholar]
- Duque-Méndez, N.D.; Orozco-Alzate, M.; Vélez, J.J. Hydro-meteorological data analysis using OLAP. Dyna 2014, 81, 160–167. [Google Scholar] [CrossRef]
- Hashim, H. Hybrid Warehouse Model and Solutions for Climate Data Analysis. J. Comput. Commun. 2020, 8, 75–98. [Google Scholar] [CrossRef]
- Lu, J. Data Protection Software for Civil Aviation Control Flight Information System Based on FPE Algorithm. Secur. Commun. Netw. 2022, 2022, 4150660. [Google Scholar] [CrossRef]
- Garani, G.; Helmer, S. Integrating Star and Snowflake Schemas in Data Warehouses. Int. J. Data Warehous. Min. 2012, 8, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Garani, G.; Cassavia, N.; Savvas, I.K. An Application of an Intelligent Data Warehouse for Modelling Spatiotemporal Objects. Int. J. Big Data Intell. Appl. 2020, 1, 36–57. [Google Scholar] [CrossRef]
Wind Key | Wind-Scale Characterization |
---|---|
1 | calm |
2 | light air |
3 | light breeze |
4 | gentle breeze |
5 | moderate breeze |
6 | fresh breeze |
7 | strong breeze |
8 | moderate gale |
9 | fresh gale |
10 | strong gale |
11 | whole gale |
12 | storm |
13 | hurricane |
Rain Key | Rainfall Characterization |
---|---|
0 | zero |
1 | light |
2 | moderate |
3 | strong |
4 | catastrophic |
Table Name | Category | Attribute Name | Semantics | Unit of Measurement |
---|---|---|---|---|
MeteoFact | Wind | WS10M_MIN | minimum wind speed at 10 m | Knots |
MeteoFact | Wind | WS10M_MAX | maximum wind speed at 10 m | Knots |
MeteoFact | Wind | WS10M | average wind speed at 10 m | Knots |
MeteoFact | Temperature | T2M_MIN | minimum temperature at two meters above the ground | Celsius scale |
MeteoFact | Temperature | T2M_MAX | maximum temperature at two meters above the ground | Celsius scale |
MeteoFact | Temperature | T2M | average temperature at two meters above the ground | Celsius scale |
MeteoFact | Temperature | T2MDEW | dew point temperature (the temperature where the humidity reaches 100%) | Celsius scale |
MeteoFact | Precipitation | Precipitation | 1 mm = 1 L of water that falls in one square meter precipitation | Millimeters (mm) |
MeteoFact | Moisture | RH2M | percentage of relative humidity at two meters above the earth’s surface | % |
MeteoFact | Moisture | SurfacePressure | atmospheric pressure reduced to the sea level | Millibar (mbar) |
WindScale | Wind | ScaleDescription | wind intensity phase | 1–13 (see Table 1) |
RainIntensity | Precipitation | RainfallDescription | precipitation intensity phase | 0–4 (see Table 2) |
Meteorological Factor | Delays | Cancellations | ||
---|---|---|---|---|
Ratio | (%) | Ratio | (%) | |
Wind (> | ≤ 33 knots) | 20.3 | 1929.1 | 40.2 | 3916.4 |
Precipitation (> | ≤ 40 mm) | 15.0 | 1397.1 | 23.3 | 2227.1 |
Temperature (> | ≤ 35 °C) | 18.5 | 1822.7 | 20.5 | 2031.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garani, G.; Papadatos, D.; Kotsiantis, S.; Verykios, V.S. Meteorological Data Warehousing and Analysis for Supporting Air Navigation. Informatics 2022, 9, 78. https://doi.org/10.3390/informatics9040078
Garani G, Papadatos D, Kotsiantis S, Verykios VS. Meteorological Data Warehousing and Analysis for Supporting Air Navigation. Informatics. 2022; 9(4):78. https://doi.org/10.3390/informatics9040078
Chicago/Turabian StyleGarani, Georgia, Dionysios Papadatos, Sotiris Kotsiantis, and Vassilios S. Verykios. 2022. "Meteorological Data Warehousing and Analysis for Supporting Air Navigation" Informatics 9, no. 4: 78. https://doi.org/10.3390/informatics9040078