Systematic Review of Multimodal Human–Computer Interaction
Abstract
:1. Introduction
1.1. Types of Technologies
1.2. Domains
2. Methods
2.1. Research Questions
- RQ1: How has the type of technology changed over time in each domain?
- RQ2: What is the typical technology type by domain?
- RQ3: How has the frequency of research publications changed over time by domain?
- RQ4: How are research publications grouped across metrics given their similarities?
2.2. Keyword Identification
2.3. Study Identification Search Method
2.4. Quality Assessment
2.5. Data Collection
2.6. Inclusion and Exclusion Criteria
2.7. Data Analysis
3. Results
3.1. Synthesis
3.1.1. Concepts and Overviews
Visualization
VR and AR
VR and Haptics
Behavioral Theories of HCI
Authors/Year | Display | Interaction | Tracking | Application |
---|---|---|---|---|
Hekler et al. (2013) [38] | NA | NA | NA | Behavioral Theory in HCI |
Kherer and Hauser (2013) [28] | NA | NA | NA | Survey of multifaceted scientific data visualization |
Reda et al. (2013) [29] | NA | NA | NA | Hybrid-Reality Environments review |
Vines et al. (2013) [39] | NA | NA | NA | Research of participation in HCI |
Achibet et al. (2014) [36] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic grip force system |
Deng et al. (2014) [37] | Haptic, VR | NA | NA | Review of multimodality with Eye tracking and haptics |
Diefenbach et al. (2014) [40] | NA | NA | NA | Review of hedonism in human–computer interaction |
Freina and Ott (2015) [3] | VR | NA | NA | Review of immersive VR in education |
Muhanna (2015) [33] | Haptic, VR | Vibration, gizmo, tracking | Hand, head, body | CAVE System |
Olshannikova et al. (2015) [30] | VR, AR | NA | NA | Overview of Big Data visualization with AR and VR |
Anthes et al. (2016) [11] | VR | NA | NA | State-of-the-art of VR technology |
Chavan (2016) [34] | VR, AR | NA | NA | Review with the comparison between AR and VR |
Slater and Sanchez-Vives (2016) [31] | VR | NA | NA | State-of-the-art of immersive VR |
Pacchierotti et al. (2017) [7] | Haptic | NA | NA | Review of haptic systems for fingertip and the hand taxonomy |
Rubio-Tamayo et al. (2017) [35] | VR | NA | NA | Review of immersive environments and VR |
3.1.2. Medicine
Surgery
Training
Rehabilitation
Dentistry
Authors/Year | Display | Interaction | Tracking | Application |
---|---|---|---|---|
Talasaz and Patel (2013) [42] | Haptic | Gizmo, tracking | Hand | Haptic teleoperation system |
Díaz et al. (2014) [43] | Haptic | Vibration, audio, gizmo, tracking | Hand, body | Haptic system for surgery drilling assistance |
Esteban et al. (2014) [45] | Haptic, VR | Gizmo, tracking | Hand, body | Visuo-haptic surgical learning environment |
Jeon and Harders (2014) [44] | Haptic, AR | NA | NA | Haptic AR tumor palpation theory |
Khanal et al. (2014) [48] | Haptic, VR | Audio, gizmo, tracking | Hand | Visuo-haptic cardiac life support simulator |
Fortmeier et al. (2015) [47] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic respiratory motion simulation |
Pan et al. (2015) [50] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic laparoscopic rectum surgery training |
Ruffaldi et al. (2015) [46] | Haptic, VR | Gizmo, tracking | Hand, head | Visuo-haptic Ultrasonography system |
Ruthenbeck and Reynolds (2015) [41] | Haptic, VR | NA | NA | State of the art of VR for medical training |
Wang et al. (2015) [55] | Haptic, VR | Audio, gizmo, tracking | Hand | Visuo-haptic dental simulation on drilling operation |
Andaluz et al. (2016) [52] | Haptic, VR | Vibration, gizmo, tracking | Hand, head | Visuo-haptic Upper Limb Rehabilitation system |
Escobar-Castillejos et al. (2016) [4] | Haptic, VR, AR, 2D | Vibration, audio, gizmo, tracking | Object, eye, hand, head, body | Medical training simulators review |
Vaughan et al. (2016) [5] | Haptic, VR | NA | NA | Review of VR training simulators for orthopedic surgery |
Wang et al. (2016) [54] | Haptic, VR | NA | NA | Survey of multisensory feedback VR on a dental training system |
Won et al. (2017) [53] | VR | NA | NA | Review of immersive VR for pediatric pain |
Rose et al. (2018) [51] | Haptic, VR, 2D | NA | NA | Review of immersive VR for rehabilitation |
Hamza-Lup et al. (2019) [49] | Haptic, VR | NA | NA | Survey of surgical training with visuo-haptic simulation |
3.1.3. Physics
Surfaces
Object Grasping
Fluid Mechanics
Electromagnetism
Dynamic Systems
Astrophysics
Molecular Physics
Authors/Year | Display | Interaction | Tracking | Application |
---|---|---|---|---|
Kucukyilmaz et al. (2013) [56] | Haptic, VR | Vibration, gizmo, tracking | Hand | Visuo-haptic shared ball board game |
Donalek et al. (2014) [57] | VR | Gizmo, tracking | Hand, head | VR Data visualization |
Kim and Kwon (2014) [58] | Haptic, 2D | Gizmo, tracking | Hand | Haptic interaction with 2D images |
Kokubun et al. (2014) [59] | Haptic, VR | Touchpad, tracking | Hand | Haptic stiffness on touchscreen |
Nakamura and Yamamoto (2014) [60] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic multi-finger surface system |
Prachyabrued and Borst (2014) [64] | VR | Audio, gizmo, tracking | Hand | VR hand grasping research |
Wang and Wang (2014) [66] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic rowing canoe simulation |
Madan et al. (2015) [65] | Haptic, 2D | Gizmo, tracking | Hand | Visuo-haptic collaborative transport in a maze |
Amirkhani and Nahvi (2016) [70] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic physics experiments |
Lindgren et al. (2016) [71] | VR, AR | Gizmo, tracking | Body | Planetary motion system in Mixed Reality |
Magana et al. (2017) [68] | Haptic, VR, 2D | Vibration, gizmo, tracking | Hand | Visuo-haptic learning of electricity and magnetism |
Shaikh et al. (2017) [69] | Haptic, VR | Gizmo, tracking | Hand | Visuo-Haptic learning of electricity and magnetism |
Yuksel et al. (2017) [61] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic learning of concept of friction |
Edwards et al. (2018) [72] | Haptic, VR | Vibration, gizmo, tracking | Hand, head | Visuo-haptic system for learning organic chemistry |
Neri et al. (2018) [63] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic experiment to improve understanding of friction |
Walsh et al. (2018) [67] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic experiment of conceptual understanding of forces acting in trusses |
Yuksel et al. (2019) [62] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic experiment to explore the effects of visual and haptic feedback on learning friction |
3.1.4. Human factors/User Experience Design (UX)
User Factors
Product Factors
Authors/Year | Display | Interaction | Tracking | Application |
---|---|---|---|---|
Groten et al. (2013) [80] | Haptic, 2D | Audio, gizmo, tracking | Hand | Visuo-haptic 2D shared ball tracking |
Kober and Neuper (2013) [74] | VR | Gizmo | NA | Analysis of personality and presence in VR |
Okamoto et al. (2013) [73] | Haptic | NA | NA | Review of psychophysical dimensions of tactile perception of textures |
Aras et al. (2014) [81] | Haptic, VR, 2D | Gizmo, tracking | Hand | Visuo-haptic system to transport virtual objects 2D and 3D |
Cavrag et al. (2014) [75] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic system to interact with spiders |
Hamam et al. (2014) [82] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic balance ball system |
Odom et al. (2014) [76] | VR | NA | NA | Analysis of qualities of virtual possessions |
Achibet et al. (2015) [83] | Haptic, VR | Gizmo, tracking | Hand | Haptic elastic arm for virtual interaction |
Bombari et al. (2015) [77] | VR | NA | NA | Analysis of social interactions through immersive virtual environments |
Fittkau et al. (2015) [84] | VR | Gizmo, tracking | Hand | VR software architecture view system |
Moran et al. (2015) [85] | VR | Gizmo, tracking | Hand | VR big data visualization system |
Ahmed et al. (2016) [78] | Haptic, VR | Vibration, audio, gizmo, tracking | Hand, head | Haptic affective touch in VR analysis |
Atienza et al. (2016) [86] | VR | Gizmo, tracking | Hand, head | VR interaction technique using head gaze |
Carvalheiro et al. (2016) [87] | Haptic, VR | Audio, gizmo, tracking | Object, hand | Visuo-haptic interactive real to virtual mapping system |
Chen et al. (2016) [88] | Haptic, VR | Vibration, wind, temperature, audio, gizmo, tracking | Body | Visuo-haptic immersive system |
Matsumoto et al. (2016) [89] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic walking corridor |
Kim et al. (2017) [90] | Haptic, VR | Vibration, temperature, audio, gizmo, tracking | Hand | Visuo-haptic immersive hand interaction system |
Kyriakou et al. (2017) [79] | VR | Audio, gizmo, tracking | Hand, head, body | VR environments for simulation of crowd interactions |
Lee et al. (2017) [91] | VR | Gizmo, tracking | Body | VR walking simulation |
Maereg et al. (2017) [92] | Haptic, VR | Vibration, gizmo, tracking | Hand | Visuo-haptic stiffness interaction system |
Piumsomboon et al. (2017) [93] | VR | Gizmo, tracking | Eye, head | Eye tracker for image visualization on VR analysis |
Reski and Alissandrakis (2019) [94] | VR | Gizmo, tracking | Hand | Comparison of several VR devices for data exploration |
3.1.5. Transportation
Driving
Flight
Authors/year | Display | Interaction | Tracking | Application |
---|---|---|---|---|
Grane and Bengtsson (2013) [95] | Haptic, VR | Vibration, gizmo | NA | Visuo-haptic interfaces affect driver performance analysis |
Altendorf et al. (2014) [97] | Haptic, VR, 2D | Gizmo, tracking | Hand, body | Visuo-haptic driving simulator |
Kemeny (2014) [96] | VR | NA | NA | VR Driving simulators analysis |
Mars et al. (2014) [98] | Haptic, VR | gizmo, tracking | Hand, body | Visuo-haptic driving simulator |
Aslandere et al. (2015) [101] | VR | Audio, gizmo, tracking | Hand, head | Virtual hand button interaction on VR flight simulator |
Li and Zhou (2016) [102] | VR | Gizmo, tracking | Hand, head | Virtual experience on an aircraft carrier simulator |
Marayong et al. (2017) [103] | Haptic, 2D | Gizmo, tracking | Hand | Haptic cockpit air transportation system |
Oberhauser and Dreyer (2017) [104] | VR | Touchpad, gizmo, tracking | Eye, hand, head | VR flight simulator |
Valentino et al. (2017) [105] | VR | Gizmo, tracking | Head | VR flight simulator |
Wang et al. (2018) [99] | Haptic, VR | Audio, gizmo | NA | Haptic driving guidance system |
Stamer et al. (2020) [100] | Haptic, VR | Vibration, gizmo, tracking | Hand | Visuo-haptic driving simulator benefits analysis |
3.1.6. Cultural Heritage
Museum
Archaeology
Tourism
Authors/Year | Display | Interaction | Tracking | Application |
---|---|---|---|---|
Chen et al. (2014) [106] | AR | Audio, tracking | Hand | AR museum guidance system |
Dima et al. (2014) [107] | Haptic, AR | Gizmo, tracking | Hand | Haptic interaction that makes the illusion of touching museum artifact |
Gaugne et al. (2014) [112] | Haptic, VR | Audio, gizmo, tracking | Hand, head, body | Visuo-haptic interaction in buildings and chambers |
Pietroni and Adami (2014) [113] | VR | Audio, tracking | Body | VR museum interactive system |
Papaefthymiou et al. (2015) [108] | VR | Touchpad, audio, gizmo, tracking | Head, body | VR museum application |
Jung et al. (2016) [8] | VR, AR | NA | NA | VR, AR Visitor Experiences in Museum analysis |
Kersten et al. (2017) [109] | VR | Gizmo, tracking | Hand, head, body | VR museum system |
Tsai et al. (2017) [110] | AR | Touchpad, audio, gizmo | NA | AR museum tour guide system |
Younes et al. (2017) [115] | VR, AR | Gizmo, tracking | Hand | See cultural buildings in AR and VR |
Barbieri et al. (2018) [114] | VR | Touchpad, audio | NA | VR exhibition for archaeological museums |
Bekele et al. (2018) [9] | Haptic, VR, AR | NA | NA | Survey of AR, VR, and MR for Cultural Heritage |
Carrozzino et al. (2018) [111] | VR | Audio, gizmo | NA | VR analysis to evaluate virtual guidance in museums |
3.1.7. Industry
Manufacturing
Maintenance
Authors/Year | Display | Interaction | Tracking | Application |
---|---|---|---|---|
Perret et al. (2013) [116] | Haptic, VR | NA | NA | Haptic feedback for assembly tasks analysis |
Qiu et al. (2013) [117] | Haptic, VR | Audio, gizmo, tracking | Hand, head, body | Visuo-haptic assembly system |
Xia et al. (2013) [118] | Haptic, VR | NA | NA | Visuo-haptic review for product assembly |
Gonzalez-Badillo et al. (2014) [119] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic assembly system |
Hamid et al. (2014) [120] | VR, AR | NA | NA | Review of VR applications in manufacturing |
Vélaz et al. (2014) [121] | Haptic, VR, 2D | gizmo, tracking | Hand | Visuo-haptics assembling parts learning system |
Abidi et al. (2015) [122] | Haptic, VR | Gizmo, tracking | Hand | Visuo-haptic assembly system |
Choi et al. (2015) [1] | VR | NA | NA | Survey of VR in manufacturing |
Gavish et al. (2015) [123] | Haptic, VR, AR | Touchpad, vibration, audio, gizmo, tracking | Object, hand | VR, AR assembly system |
Grajewski et al. (2015) [124] | Haptic, VR | Gizmo, tracking | Hand, head, body | Visuo-haptic assembling parts learning simulator |
Radkowski et al. (2015) [125] | AR | Tracking | Object | AR training system to show assembly instructions |
Al-Ahmari et al. (2016) [126] | Haptic, VR | Audio, gizmo, tracking | Hand, head | Visuo-haptic manufacturing assembly simulator |
Wang et al. (2016) [127] | AR | Tracking | Object, hand | AR assembly simulation |
Xia (2016) [128] | Haptic, VR, AR | NA | NA | Haptic manufacturing simulators survey |
Berg and Vance (2017) [2] | Haptic, VR | NA | NA | Survey of use of VR in manufacturing |
Ho et al. (2018) [129] | VR | Touchpad, gizmo, tracking | Hand, head, body | VR assembly training system |
Loch et al. (2018) [131] | Haptic, VR | Gizmo, tracking | Hand | Haptic interaction into a virtual training system for maintenance procedures |
Roldán et al. (2019) [130] | VR | Audio, gizmo, tracking | Hand, head | VR system to transfer knowledge in the context of Industry 4.0 |
3.2. Analysis
3.2.1. Temporal Analysis
3.2.2. Frequency Analysis
3.2.3. Cluster Analysis
4. Discussion
Research Question 1—How has the type of technology changed over time in each domain?
Research Question 2—What is the typical technology type by domain?
Research Question 3—How has the frequency of research publications changed over time by domain?
- The domains of Concepts and overviews and UX do not clearly present new works that have the characteristics to be part of the analysis of this work since 2018 and that the domain of Cultural heritage does not clearly present new works that have the characteristics to form part of the analysis of this work since 2019.
- One work in the Transportation domain from 2020 has the characteristics to form part of the analysis of this work, while no new work was found with the characteristics to form part of the analysis of this work for the other domains.
- In all domains, we found works with applications of haptics and VR.
- The most used technology type is VR in all domains (Concepts and overviews, Physics, Transportation, Cultural heritage, Industry, and UX), except in Medicine where haptics is the most commonly used.
- The second most used technology type is haptics in most domains (Concepts and overviews, Physics, Transportation, Industry, and UX), except in Medicine, where VR is the second most used, and Cultural heritage, where AR is the second most used.
- We did not find AR applications for the Transportation or UX domains, nor did we find 2D applications for the Cultural heritage domain. Both technology types, 2D and AR, are the least used in all domains.
- The most used interaction types for all domains are gizmo and tracking.
Research Question 4—How are research publications grouped across metrics given their similarities?
5. Conclusions, Limitations, and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, S.; Jung, K.; Noh, S.D. Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurr. Eng. 2015, 23, 40–63. [Google Scholar] [CrossRef]
- Berg, L.P.; Vance, J.M. Industry use of virtual reality in product design and manufacturing: A survey. Virtual Real. 2017, 21, 1–17. [Google Scholar] [CrossRef]
- Freina, L.; Ott, M. A literature review on immersive virtual reality in education: State of the art and perspectives. In The International Scientific Conference eLearning and Software for Education; “Carol I” National Defence University: Bucharest, Romania, 2015; Volume 1, p. 133. [Google Scholar]
- Escobar-Castillejos, D.; Noguez, J.; Neri, L.; Magana, A.; Benes, B. A Review of Simulators with Haptic Devices for Medical Training. J. Med. Syst. 2016, 40, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, N.; Dubey, V.N.; Wainwright, T.W.; Middleton, R.G. A review of virtual reality based training simulators for orthopaedic surgery. Med. Eng. Phys. 2016, 38, 59–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar-Castillejos, D.; Noguez, J.; Bello, F.; Neri, L.; Magana, A.J.; Benes, B. A Review of Training and Guidance Systems in Medical Surgery. Appl. Sci. 2020, 10, 5752. [Google Scholar] [CrossRef]
- Pacchierotti, C.; Sinclair, S.; Solazzi, M.; Frisoli, A.; Hayward, V.; Prattichizzo, D. Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives. IEEE Trans. Haptics 2017, 10, 580–600. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Tom Dieck, M.C.; Lee, H.; Chung, N. Effects of virtual reality and augmented reality on visitor experiences in museum. In Information and Communication Technologies in Tourism 2016; Springer: Bilbao, Spain, 2016; pp. 621–635. [Google Scholar]
- Bekele, M.K.; Pierdicca, R.; Frontoni, E.; Malinverni, E.S.; Gain, J. A survey of augmented, virtual, and mixed reality for cultural heritage. J. Comput. Cult. Herit. 2018, 11, 1–36. [Google Scholar] [CrossRef]
- Obrenovic, Z.; Starcevic, D. Modeling multimodal human-computer interaction. Computer 2004, 37, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Anthes, C.; García-Hernández, R.J.; Wiedemann, M.; Kranzlmuller, D. State of the art of virtual reality technology. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–19. [Google Scholar] [CrossRef]
- Hornbæk, K.; Mottelson, A.; Knibbe, J.; Vogel, D. What Do We Mean by “Interaction”? An Analysis of 35 Years of CHI. ACM Trans. Comput.-Hum. Interact. 2019, 26, 1–30. [Google Scholar] [CrossRef]
- Elvins, T.T. A survey of algorithms for volume visualization. ACM Siggraph Comput. Graph. 1992, 26, 194–201. [Google Scholar] [CrossRef]
- Kucher, K.; Kerren, A. Text visualization techniques: Taxonomy, visual survey, and community insights. In Proceedings of the 2015 IEEE Pacific Visualization Symposium (PacificVis), Hangzhou, China, 14–17 April 2015; pp. 117–121. [Google Scholar]
- Liu, S.; Cui, W.; Wu, Y.; Liu, M. A survey on information visualization: Recent advances and challenges. Vis. Comput. 2014, 30, 1373–1393. [Google Scholar] [CrossRef]
- Desai, P.R.; Desai, P.N.; Ajmera, K.D.; Mehta, K. A review paper on oculus rift-a virtual reality headset. arXiv 2014, arXiv:1408.1173. [Google Scholar]
- Garzón, J. An Overview of Twenty-Five Years of Augmented Reality in Education. Multimodal Technol. Interact. 2021, 5, 37. [Google Scholar] [CrossRef]
- Marques, B.; Alves, J.a.; Neves, M.; Justo, I.; Santos, A.; Rainho, R.; Maio, R.; Costa, D.; Ferreira, C.; Dias, P.; et al. Interaction with Virtual Content Using Augmented Reality: A User Study in Assembly Procedures. Proc. ACM Hum.-Comput. Interact. 2020, 4, 1–17. [Google Scholar] [CrossRef]
- Faeth, A.; Harding, C. Emergent Effects in Multimodal Feedback from Virtual Buttons. ACM Trans. Comput.-Hum. Interact. 2014, 21, 1–23. [Google Scholar] [CrossRef]
- Sreelakshmi, M.; Subash, T. Haptic technology: A comprehensive review on its applications and future prospects. Mater. Today Proc. 2017, 4, 4182–4187. [Google Scholar] [CrossRef]
- Leff, B.; Finucane, T.E. Gizmo idolatry. JAMA 2008, 299, 1830–1832. [Google Scholar] [CrossRef]
- Vera-Baceta, M.A.; Thelwall, M.; Kousha, K. Web of Science and Scopus language coverage. Scientometrics 2019, 121, 1803–1813. [Google Scholar] [CrossRef]
- García, J.A.; Rodriguez-Sánchez, R.; Fdez-Valdivia, J. Ranking of the subject areas of Scopus. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 2013–2023. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 105906. [Google Scholar]
- Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report, Ver.2.3; Keele University and Durham University Joint Report: Keele, UK; Durham, UK, 2007. [Google Scholar]
- Xiao, Y.; Watson, M. Guidance on conducting a systematic literature review. J. Plan. Educ. Res. 2019, 39, 93–112. [Google Scholar] [CrossRef]
- Torres-Carrión, P.V.; González-González, C.S.; Aciar, S.; Rodríguez-Morales, G. Methodology for systematic literature review applied to engineering and education. In Proceedings of the 2018 IEEE Global Engineering Education Conference (EDUCON), Santa Cruz de Tenerife, Spain, 17–20 April 2018; pp. 1364–1373. [Google Scholar] [CrossRef]
- Kehrer, J.; Hauser, H. Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey. IEEE Trans. Vis. Comput. Graph. 2013, 19, 495–513. [Google Scholar] [CrossRef] [PubMed]
- Reda, K.; Febretti, A.; Knoll, A.; Aurisano, J.; Leigh, J.; Johnson, A.; Papka, M.E.; Hereld, M. Visualizing Large, Heterogeneous Data in Hybrid-Reality Environments. IEEE Comput. Graph. Appl. 2013, 33, 38–48. [Google Scholar] [CrossRef]
- Olshannikova, E.; Ometov, A.; Koucheryavy, Y.; Olsson, T. Visualizing Big Data with augmented and virtual reality: Challenges and research agenda. J. Big Data 2015, 2, 22. [Google Scholar] [CrossRef]
- Slater, M.; Sanchez-Vives, M.V. Enhancing Our Lives with Immersive Virtual Reality. Front. Robot. AI 2016, 3, 74. [Google Scholar] [CrossRef] [Green Version]
- Mihelj, M.; Novak, D.; Begus, S. Interaction with a Virtual Environment. In Virtual Reality Technology and Applications; Springer: Dordrecht, The Netherlands, 2014; pp. 205–211. [Google Scholar]
- Muhanna, M.A. Virtual reality and the CAVE: Taxonomy, interaction challenges and research directions. J. King Saud Univ. Comput. Inf. Sci. 2015, 27, 344–361. [Google Scholar] [CrossRef] [Green Version]
- Chavan, S.R. Augmented reality vs. virtual reality: Differences and similarities. Int. J. Adv. Res. Comput. Eng. Technol. 2016, 5, 1947–1952. [Google Scholar]
- Rubio-Tamayo, J.L.; Gertrudix Barrio, M.; Garcia Garcia, F. Immersive Environments and Virtual Reality: Systematic Review and Advances in Communication, Interaction and Simulation. Multimodal Technol. Interact. 2017, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Achibet, M.; Marchal, M.; Argelaguet, F.; Lécuyer, A. The Virtual Mitten: A novel interaction paradigm for visuo-haptic manipulation of objects using grip force. In Proceedings of the 2014 IEEE Symposium on 3D User Interfaces (3DUI), Minneapolis, MN, USA, 29–30 March 2014; pp. 59–66. [Google Scholar]
- Deng, S.; Kirkby, J.A.; Chang, J.; Zhang, J.J. Multimodality with eye tracking and haptics: A new horizon for serious games? Int. J. Serious Games 2014, 1, 17–34. [Google Scholar] [CrossRef]
- Hekler, E.B.; Klasnja, P.; Froehlich, J.E.; Buman, M.P. Mind the Theoretical Gap: Interpreting, Using, and Developing Behavioral Theory in HCI Research. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, Paris, France, 27 April–2 May 2013; ACM: New York, NY, USA, 2013; pp. 3307–3316. [Google Scholar] [CrossRef]
- Vines, J.; Clarke, R.; Wright, P.; McCarthy, J.; Olivier, P. Configuring Participation: On How We Involve People in Design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, Paris, France, 27 April–2 May 2013; ACM: New York, NY, USA, 2013; pp. 429–438. [Google Scholar] [CrossRef]
- Diefenbach, S.; Kolb, N.; Hassenzahl, M. The ‘hedonic’ in human-computer interaction: History, contributions, and future research directions. In Proceedings of the 2014 Conference on Designing Interactive Systems, Vancouver, BC, Canada, 21–25 June 2014; ACM: New York, NY, USA, 2014; pp. 305–314. [Google Scholar]
- Ruthenbeck, G.S.; Reynolds, K.J. Virtual reality for medical training: The state-of-the-art. J. Simul. 2015, 9, 16–26. [Google Scholar] [CrossRef]
- Talasaz, A.; Patel, R.V. Integration of Force Reflection with Tactile Sensing for Minimally Invasive Robotics-Assisted Tumor Localization. IEEE Trans. Haptics 2013, 6, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Díaz, I.; Gil, J.J.; Louredo, M. A haptic pedal for surgery assistance. Comput. Methods Programs Biomed. 2014, 116, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Harders, M. Haptic Tumor Augmentation: Exploring Multi-Point Interaction. IEEE Trans. Haptics 2014, 7, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Esteban, G.; Fernández, C.; Conde, M.A.; García-Peñalvo, F.J. Playing with SHULE: Surgical Haptic Learning Environment. In Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality, TEEM ’14, Salamanca, Spain, 1–3 October 2014; ACM: New York, NY, USA, 2014; pp. 247–253. [Google Scholar] [CrossRef]
- Ruffaldi, E.; Brizzi, F.; Filippeschi, A.; Avizzano, C.A. Co-located haptic interaction for virtual USG exploration. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1548–1551. [Google Scholar] [CrossRef]
- Fortmeier, D.; Wilms, M.; Mastmeyer, A.; Handels, H. Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models. IEEE Trans. Haptics 2015, 8, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Khanal, P.; Vankipuram, A.; Ashby, A.; Vankipuram, M.; Gupta, A.; Drumm-Gurnee, D.; Josey, K.; Tinker, L.; Smith, M. Collaborative virtual reality based advanced cardiac life support training simulator using virtual reality principles. J. Biomed. Informat. 2014, 51, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Hamza-Lup, F.G.; Bogdan, C.M.; Popovici, D.M.; Costea, O.D. A Survey of Visuo-Haptic Simulation in Surgical Training. arXiv 2019, arXiv:1903.03272. [Google Scholar]
- Pan, J.J.; Chang, J.; Yang, X.; Liang, H.; Zhang, J.J.; Qureshi, T.; Howell, R.; Hickish, T. Virtual reality training and assessment in laparoscopic rectum surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2015, 11, 194–209. [Google Scholar] [CrossRef] [Green Version]
- Rose, T.; Nam, C.S.; Chen, K.B. Immersion of virtual reality for rehabilitation—Review. Appl. Ergon. 2018, 69, 153–161. [Google Scholar] [CrossRef]
- Andaluz, V.H.; Salazar, P.J.; Escudero, M.; Bustamante, C.; Silva, M.; Quevedo, W.; Sánchez, J.S.; Espinosa, E.G.; Rivas, D. Virtual reality integration with force feedback in upper limb rehabilitation. In International Symposium on Visual Computing; Springer: Las Vegas, NV, USA, 2016; pp. 259–268. [Google Scholar]
- Won, A.S.; Bailey, J.; Bailenson, J.; Tataru, C.; Yoon, I.A.; Golianu, B. Immersive Virtual Reality for Pediatric Pain. Children 2017, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, T.; Zhang, Y.; Hou, J. Survey on multisensory feedback virtual reality dental training systems. Eur. J. Dent. Educ. 2016, 20, 248–260. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, S.; Li, T.; Zhang, Y.; Wang, X. Preliminary evaluation of a virtual reality dental simulation system on drilling operation. Bio-Med. Mater. Eng. 2015, 26, S747–S756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucukyilmaz, A.; Sezgin, T.M.; Basdogan, C. Intention Recognition for Dynamic Role Exchange in Haptic Collaboration. IEEE Trans. Haptics 2013, 6, 58–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donalek, C.; Djorgovski, S.G.; Davidoff, S.; Cioc, A.; Wang, A.; Longo, G.; Norris, J.S.; Zhang, J.; Lawler, E.; Yeh, S.; et al. Immersive and Collaborative Data Visualization Using Virtual Reality Platforms. arXiv 2014, arXiv:1410.7670. [Google Scholar]
- Kim, S.C.; Kwon, D.S. Haptic interaction with objects in a picture based on pose estimation. Multimed. Tools Appl. 2014, 72, 2041–2062. [Google Scholar] [CrossRef]
- Kokubun, A.; Ban, Y.; Narumi, T.; Tanikawa, T.; Hirose, M. Representing normal and shearing forces on the mobile device with visuo-haptic interaction and a rear touch interface. In Proceedings of the 2014 IEEE Haptics Symposium (HAPTICS), Houston, TX, USA, 23–26 February 2014; pp. 415–420. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamamoto, A. Multi-finger surface visuo-haptic rendering using electrostatic stimulation with force-direction sensing gloves. In Proceedings of the 2014 IEEE Haptics Symposium (HAPTICS), Houston, TX, USA, 23–26 February 2014; pp. 489–491. [Google Scholar] [CrossRef]
- Yuksel, T.; Walsh, Y.; Krs, V.; Benes, B.; Ngambeki, I.B.; Berger, E.J.; Magana, A.J. Exploration of affordances of visuo-haptic simulations to learn the concept of friction. In Proceedings of the 2017 IEEE Frontiers in Education Conference (FIE), Indianapolis, IN, USA, 18–21 October 2017; pp. 1–9. [Google Scholar]
- Yuksel, T.; Walsh, Y.; Magana, A.J.; Nova, N.; Krs, V.; Ngambeki, I.; Berger, E.J.; Benes, B. Visuohaptic experiments: Exploring the effects of visual and haptic feedback on students’ learning of friction concepts. Comput. Appl. Eng. Educ. 2019, 27, 1376–1401. [Google Scholar] [CrossRef]
- Neri, L.; Magana, A.J.; Noguez, J.; Walsh, Y.; Gonzalez-Nucamendi, A.; Robledo-Rella, V.; Benes, B. Visuo-haptic Simulations to Improve Students’ Understanding of Friction Concepts. In Proceedings of the 2018 IEEE Frontiers in Education Conference (FIE), San Jose, CA, USA, 3–6 October 2018; pp. 1–6. [Google Scholar]
- Prachyabrued, M.; Borst, C.W. Visual feedback for virtual grasping. In Proceedings of the 2014 IEEE Symposium on 3D User Interfaces (3DUI), Minneapolis, MN, USA, 29–30 March 2014; pp. 19–26. [Google Scholar] [CrossRef]
- Madan, C.E.; Kucukyilmaz, A.; Sezgin, T.M.; Basdogan, C. Recognition of Haptic Interaction Patterns in Dyadic Joint Object Manipulation. IEEE Trans. Haptics 2015, 8, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Y. Haptic Interaction with Fluid Based on Smooth Particles and Finite Elements. In Computational Science and Its Applications; ICCSA 2014 Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; pp. 808–823. [Google Scholar] [CrossRef]
- Walsh, Y.; Magana, A.J.; Quintana, J.; Krs, V.; Coutinho, G.; Berger, E.; Ngambeki, I.B.; Efendy, E.; Benes, B. Designing a Visuohaptic Simulation to Promote Graphical Representations and Conceptual Understanding of Structural Analysis. In Proceedings of the 2018 IEEE Frontiers in Education Conference (FIE), San Jose, CA, USA, 3–6 October 2018; pp. 1–7. [Google Scholar]
- Magana, A.; Sanchez, K.; Shaikh, U.; Jones, G.; Tan, H.; Guayaquil, A.; Benes, B. Exploring Multimedia Principles for Supporting Conceptual Learning of Electricity and Magnetism with Visuohaptic Simulations. Comput. Educ. J. 2017, 8, 9–23. [Google Scholar]
- Shaikh, U.A.S.; Magana, A.J.; Neri, L.; Escobar-Castillejos, D.; Noguez, J.; Benes, B. Undergraduate students’ conceptual interpretation and perceptions of haptic-enabled learning experiences. Int. J. Educ. Technol. High. Educ. 2017, 14, 15. [Google Scholar] [CrossRef] [Green Version]
- Amirkhani, S.; Nahvi, A. Design and implementation of an interactive virtual control laboratory using haptic interface for undergraduate engineering students. Comput. Appl. Eng. Educ. 2016, 24, 508–518. [Google Scholar] [CrossRef]
- Lindgren, R.; Tscholl, M.; Wang, S.; Johnson, E. Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Comput. Educ. 2016, 95, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Edwards, B.I.; Bielawski, K.S.; Prada, R.; Cheok, A.D. Haptic virtual reality and immersive learning for enhanced organic chemistry instruction. Virtual Real. 2018, 23, 363–373. [Google Scholar] [CrossRef]
- Okamoto, S.; Nagano, H.; Yamada, Y. Psychophysical Dimensions of Tactile Perception of Textures. IEEE Trans. Haptics 2013, 6, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Kober, S.E.; Neuper, C. Personality and Presence in Virtual Reality: Does Their Relationship Depend on the Used Presence Measure? Int. J. -Hum.-Comput. Interact. 2013, 29, 13–25. [Google Scholar] [CrossRef]
- Cavrag, M.; Larivière, G.; Cretu, A.M.; Bouchard, S. Interaction with virtual spiders for eliciting disgust in the treatment of phobias. In Proceedings of the 2014 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE) Proceedings, Richardson, TX, USA, 10–11 October 2014; pp. 29–34. [Google Scholar]
- Odom, W.; Zimmerman, J.; Forlizzi, J. Placelessness, Spacelessness, and Formlessness: Experiential Qualities of Virtual Possessions. In Proceedings of the 2014 Conference on Designing Interactive Systems, DIS ’14, Vancouver, BC, Canada, 21–25 June 2014; ACM: New York, NY, USA, 2014; pp. 985–994. [Google Scholar] [CrossRef]
- Bombari, D.; Schmid Mast, M.; Canadas, E.; Bachmann, M. Studying social interactions through immersive virtual environment technology: Virtues, pitfalls, and future challenges. Front. Psychol. 2015, 6, 869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Harjunen, V.; Jacucci, G.; Hoggan, E.; Ravaja, N.; Spapé, M.M. Reach out and touch me: Effects of four distinct haptic technologies on affective touch in virtual reality. In Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; ACM: New York, NY, USA, 2016; pp. 341–348. [Google Scholar]
- Kyriakou, M.; Pan, X.; Chrysanthou, Y. Interaction with virtual crowd in Immersive and semi-Immersive Virtual Reality systems. Comput. Animat. Virtual Worlds 2017, 28, e1729. [Google Scholar] [CrossRef]
- Groten, R.; Feth, D.; Klatzky, R.L.; Peer, A. The role of haptic feedback for the integration of intentions in shared task execution. IEEE Trans. Haptics 2013, 6, 94–105. [Google Scholar] [CrossRef]
- Aras, R.; Shen, Y.; Noor, A. Quantitative assessment of the effectiveness of using display techniques with a haptic device for manipulating 3D objects in virtual environments. Adv. Eng. Softw. 2014, 76, 43–47. [Google Scholar] [CrossRef]
- Hamam, A.; Saddik, A.E.; Alja’am, J. A Quality of Experience Model for Haptic Virtual Environments. ACM Trans. Multimedia Comput. Commun. Appl. 2014, 10, 28:1–28:23. [Google Scholar] [CrossRef]
- Achibet, M.; Girard, A.; Talvas, A.; Marchal, M.; Lécuyer, A. Elastic-Arm: Human-scale passive haptic feedback for augmenting interaction and perception in virtual environments. In Proceedings of the 2015 IEEE Virtual Reality (VR), Arles, France, 23–27 March 2015; pp. 63–68. [Google Scholar]
- Fittkau, F.; Krause, A.; Hasselbring, W. Exploring software cities in virtual reality. In Proceedings of the 2015 IEEE 3rd Working Conference on Software Visualization (VISSOFT), Bremen, Germany, 27–28 September 2015; pp. 130–134. [Google Scholar] [CrossRef]
- Moran, A.; Gadepally, V.; Hubbell, M.; Kepner, J. Improving Big Data visual analytics with interactive virtual reality. In Proceedings of the 2015 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 15–17 September 2015; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Atienza, R.; Blonna, R.; Saludares, M.I.; Casimiro, J.; Fuentes, V. Interaction techniques using head gaze for virtual reality. In Proceedings of the 2016 IEEE Region 10 Symposium (TENSYMP), Bali, Indonesia, 9–11 May 2016; pp. 110–114. [Google Scholar] [CrossRef]
- Carvalheiro, C.; Nóbrega, R.; da Silva, H.; Rodrigues, R. User redirection and direct haptics in virtual environments. In Proceedings of the 24th ACM international conference on Multimedia, Amsterdam, The Netherlands, 23–27 October 2016; ACM: New York, NY, USA, 2016; pp. 1146–1155. [Google Scholar]
- Chen, Y.S.; Han, P.H.; Hsiao, J.C.; Lee, K.C.; Hsieh, C.E.; Lu, K.Y.; Chou, C.H.; Hung, Y.P. SoEs: Attachable Augmented Haptic on Gaming Controller for Immersive Interaction. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; ACM: New York, NY, USA, 2016; pp. 71–72. [Google Scholar]
- Matsumoto, K.; Ban, Y.; Narumi, T.; Yanase, Y.; Tanikawa, T.; Hirose, M. Unlimited Corridor: Redirected Walking Techniques Using Visuo Haptic Interaction. In Proceedings of the ACM SIGGRAPH 2016 Emerging Technologies, SIGGRAPH ’16, Macao, China, 5–8 December 2016; ACM: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Kim, M.; Jeon, C.; Kim, J. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality. Sensors 2017, 17, 1141. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, M.; Kim, J. A Study on Immersion and VR Sickness in Walking Interaction for Immersive Virtual Reality Applications. Symmetry 2017, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Maereg, A.T.; Nagar, A.; Reid, D.; Secco, E.L. Wearable vibrotactile haptic device for stiffness discrimination during virtual interactions. Front. Robot. AI 2017, 4, 42. [Google Scholar] [CrossRef]
- Piumsomboon, T.; Lee, G.; Lindeman, R.W.; Billinghurst, M. Exploring natural eye-gaze-based interaction for immersive virtual reality. In Proceedings of the 2017 IEEE Symposium on 3D User Interfaces (3DUI), Los Angeles, CA, USA, 18–19 March 2017; pp. 36–39. [Google Scholar] [CrossRef]
- Reski, N.; Alissandrakis, A. Open data exploration in virtual reality: A comparative study of input technology. Virtual Real. 2019, 24, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Grane, C.; Bengtsson, P. Driving performance during visual and haptic menu selection with in-vehicle rotary device. Transp. Res. Part F Traffic Psychol. Behav. 2013, 18, 123–135. [Google Scholar] [CrossRef]
- Kemeny, A. From driving simulation to virtual reality. In Proceedings of the 2014 Virtual Reality International Conference, Laval, France, 9–11 April 2014; pp. 1–5. [Google Scholar]
- Altendorf, E.; Baltzer, M.; Heesen, M.; Kienle, M.; Weissgerber, T.; Flemisch, F. H-Mode: A haptic-multimodal interaction concept for cooperative guidance and control of partially and highly automated vehicles. In Handbook of Driver Assistance Systems: Basic Information, Components and Systems for Active Safety and Comfort; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–16. [Google Scholar]
- Mars, F.; Deroo, M.; Hoc, J. Analysis of Human-Machine Cooperation When Driving with Different Degrees of Haptic Shared Control. IEEE Trans. Haptics 2014, 7, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, R.; Kaizuka, T.; Nakano, K. Driver-automation shared control: Modeling driver behavior by taking account of reliance on haptic guidance steering. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 144–149. [Google Scholar]
- Stamer, M.; Michaels, J.; Tümler, J. Investigating the Benefits of Haptic Feedback During In-Car Interactions in Virtual Reality. In International Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2020; pp. 404–416. [Google Scholar]
- Aslandere, T.; Dreyer, D.; Pankratz, F. Virtual hand-button interaction in a generic virtual reality flight simulator. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Li, L.; Zhou, J. Virtual reality technology based developmental designs of multiplayer-interaction-supporting exhibits of science museums: Taking the exhibit of “virtual experience on an aircraft carrier” in China science and technology museum as an example. In Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry, Zhuhai, China, 3–4 December 2016; Volume 1, pp. 409–412. [Google Scholar]
- Marayong, P.; Strybel, T.Z.; Robles, J.; O’Connor, R.; Vu, K.P.L.; Battiste, V. Force-Feedback Integration with NASA’s Next Generation Air Transportation System Cockpit Situation Display. J. Air Transp. 2017, 25, 17–26. [Google Scholar] [CrossRef]
- Oberhauser, M.; Dreyer, D. A virtual reality flight simulator for human factors engineering. Cogn. Technol. Work. 2017, 19, 263–277. [Google Scholar] [CrossRef]
- Valentino, K.; Christian, K.; Joelianto, E. Virtual reality flight simulator. Internetworking Indones. J. 2017, 9, 21–25. [Google Scholar]
- Chen, C.Y.; Chang, B.R.; Huang, P.S. Multimedia augmented reality information system for museum guidance. Pers. Ubiquitous Comput. 2014, 18, 315–322. [Google Scholar] [CrossRef]
- Dima, M.; Hurcombe, L.; Wright, M. Touching the Past: Haptic Augmented Reality for Museum Artefacts. In Virtual, Augmented and Mixed Reality. Applications of Virtual and Augmented Reality; Shumaker, R., Lackey, S., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 3–14. [Google Scholar]
- Papaefthymiou, M.; Plelis, K.; Mavromatis, D.; Papagiannakis, G. Mobile Virtual Reality Featuring a Six Degrees of Freedom Interaction Paradigm in a Virtual Museum Application; Institute of Computer Science: London, UK, 2015; Available online: https://fdocument.org/document/mobile-virtual-reality-featuring-a-six-degrees-of-freedom-google-cardboard.html (accessed on 15 August 2021).
- Kersten, T.P.; Tschirschwitz, F.; Deggim, S. Development of a virtual museum including a 4D presentation of building history in virtual reality. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 361. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.H.; Shen, C.Y.; Lin, Z.S.; Liu, H.R.; Chiou, W.K. Exploring location-based augmented reality experience in museums. In International Conference on Universal Access in Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2017; pp. 199–209. [Google Scholar]
- Carrozzino, M.; Colombo, M.; Tecchia, F.; Evangelista, C.; Bergamasco, M. Comparing different storytelling approaches for virtual guides in digital immersive museums. In International Conference on Augmented Reality, Virtual Reality and Computer Graphics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 292–302. [Google Scholar]
- Gaugne, R.; Gouranton, V.; Dumont, G.; Chauffaut, A.; Arnaldi, B. Immersia, an open immersive infrastructure: Doing archaeology in virtual reality. Archeol. Calc. 2014, 5, 1–10. [Google Scholar]
- Pietroni, E.; Adami, A. Interacting with virtual reconstructions in museums: The Etruscanning Project. J. Comput. Cult. Herit. 2014, 7, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, L.; Bruno, F.; Muzzupappa, M. User-centered design of a virtual reality exhibit for archaeological museums. Int. J. Interact. Des. Manuf. 2018, 12, 561–571. [Google Scholar] [CrossRef]
- Younes, G.; Kahil, R.; Jallad, M.; Asmar, D.; Elhajj, I.; Turkiyyah, G.; Al-Harithy, H. Virtual and augmented reality for rich interaction with cultural heritage sites: A case study from the Roman Theater at Byblos. Digit. Appl. Archaeol. Cult. Herit. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Perret, J.; Kneschke, C.; Vance, J.; Dumont, G. Interactive assembly simulation with haptic feedback. Assem. Autom. 2013, 33, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Fan, X.; Wu, D.; He, Q.; Zhou, D. Virtual human modeling for interactive assembly and disassembly operation in virtual reality environment. Int. J. Adv. Manuf. Technol. 2013, 69, 2355–2372. [Google Scholar] [CrossRef]
- Xia, P.; Lopes, A.M.; Restivo, M.T. A review of virtual reality and haptics for product assembly: From rigid parts to soft cables. Assem. Autom. 2013, 33, 157–164. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, G.; Medellin-Castillo, H.; Lim, T.; Ritchie, J.; Garbaya, S. The development of a physics and constraint-based haptic virtual assembly system. Assem. Autom. 2014, 34, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Hamid, N.S.S.; Aziz, F.A.; Azizi, A. Virtual reality applications in manufacturing system. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 1034–1037. [Google Scholar]
- Vélaz, Y.; Arce, J.R.; Gutiérrez, T.; Lozano-Rodero, A.; Suescun, A. The influence of interaction technology on the learning of assembly tasks using virtual reality. J. Comput. Inf. Sci. Eng. 2014, 14, 041007. [Google Scholar] [CrossRef] [Green Version]
- Abidi, M.H.; Ahmad, A.; Darmoul, S.; Al-Ahmari, A.M. Haptics assisted virtual assembly. IFAC-PapersOnLine 2015, 48, 100–105. [Google Scholar] [CrossRef]
- Gavish, N.; Gutiérrez, T.; Webel, S.; Rodríguez, J.; Peveri, M.; Bockholt, U.; Tecchia, F. Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact. Learn. Environ. 2015, 23, 778–798. [Google Scholar] [CrossRef]
- Grajewski, D.; Górski, F.; Hamrol, A.; Zawadzki, P. Immersive and haptic educational simulations of assembly workplace conditions. Procedia Comput. Sci. 2015, 75, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Radkowski, R.; Herrema, J.; Oliver, J. Augmented Reality-Based Manual Assembly Support with Visual Features for Different Degrees of Difficulty. Int. J.-Hum.-Comput. Interact. 2015, 31, 337–349. [Google Scholar] [CrossRef]
- Al-Ahmari, A.M.; Abidi, M.H.; Ahmad, A.; Darmoul, S. Development of a virtual manufacturing assembly simulation system. Adv. Mech. Eng. 2016, 8, 1687814016639824. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ong, S.; Nee, A. Real-virtual components interaction for assembly simulation and planning. Robot. -Comput.-Integr. Manuf. 2016, 41, 102–114. [Google Scholar] [CrossRef]
- Xia, P. Haptics for product design and manufacturing simulation. IEEE Trans. Haptics 2016, 9, 358–375. [Google Scholar] [CrossRef] [PubMed]
- Ho, N.; Wong, P.M.; Chua, M.; Chui, C.K. Virtual reality training for assembly of hybrid medical devices. Multimed. Tools Appl. 2018, 77, 30651–30682. [Google Scholar] [CrossRef]
- Roldán, J.J.; Crespo, E.; Martin-Barrio, A.; Peña-Tapia, E.; Barrientos, A. A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining. Robot. -Comput.-Integr. Manuf. 2019, 59, 305–316. [Google Scholar] [CrossRef]
- Loch, F.; Ziegler, U.; Vogel-Heuser, B. Integrating Haptic Interaction into a Virtual Training System for Manual Procedures in Industrial Environments. IFAC-PapersOnLine 2018, 51, 60–65. [Google Scholar] [CrossRef]
- Gurman, M. Facebook’s Oculus Is Developing a New Quest VR Headset. 2020. [Google Scholar]
- Marko, H. The Bidirectional Communication Theory—A Generalization of Information Theory. IEEE Trans. Commun. 1973, 21, 1345–1351. [Google Scholar] [CrossRef]
- Laurell, C.; Sandström, C.; Berthold, A.; Larsson, D. Exploring barriers to adoption of Virtual Reality through Social Media Analytics and Machine Learning—An assessment of technology, network, price and trialability. J. Bus. Res. 2019, 100, 469–474. [Google Scholar] [CrossRef]
- Heinonen, M. Adoption of VR and AR technologies in the enterprise. In Proceedings of the ISPIM Innovation Conference—Innovation, The Name of The Game, Stockholm, Sweden, 17–20 June 2018. [Google Scholar]
Domains | Keywords |
---|---|
Concepts and overviews | Human–computer interaction, virtual reality, augmented reality, haptic, visualization, and behavioral theories |
Medicine | Human–computer interaction, virtual reality, augmented reality, haptic, medicine, surgery, training, rehabilitation, and dentistry |
Physics | Human–computer interaction, virtual reality, augmented reality, haptic, physics, surfaces, object grasping, fluid mechanics, electromagnetism, dynamic systems, astrophysics, and molecular physics |
Transportation | Human–computer interaction, virtual reality, augmented reality, haptic, transportation, driving, and flight |
Cultural heritage | Human–computer interaction, virtual reality, augmented reality, haptic, cultural heritage, museum, archaeology, and tourism |
Industry | Human–computer interaction, virtual reality, augmented reality, haptic, industry, and manufacturing |
Human factors/User experience design | Human–computer interaction, virtual reality, augmented reality, haptic, user experience, user factors, and product factors |
Domain | Cluster 1 (Green) | Cluster 2 (Red) | Cluster 3 (Blue) |
---|---|---|---|
Concepts and overviews | 2 | 13 | 0 |
Medicine | 3 | 14 | 0 |
Physics | 9 | 0 | 8 |
Human factors/User experience design | 8 | 0 | 14 |
Cultural heritage | 0 | 0 | 12 |
Transportation | 7 | 4 | 0 |
Industry | 0 | 0 | 18 |
Cluster Sum | 29 | 31 | 52 |
Domain | Total Number of Works | Year (Number) of Maximum Works | Most Used Display Type (DT) | Most Used Interaction Type (IT) | ||
---|---|---|---|---|---|---|
TT 1 | TT 2 | IT 1 | IT 2 | |||
Concepts and overviews | 15 | 2013 (4) | VR | Haptic | Gizmo and Tracking | |
Medicine | 17 | 2015 (5) | Haptic | VR | Gizmo and Tracking | |
Physics | 17 | 2014 (6) | VR | Haptic | Tracking | Gizmo |
Human factors/User experience design | 22 | 2017 (6) | VR | Haptic | Gizmo | Tracking |
Cultural heritage | 12 | 2014 (4) | VR | AR | Gizmo and Tracking | |
Transportation | 11 | 2017 (3) | VR | Haptic | Gizmo | Tracking |
Industry | 18 | 2015 (5) | VR | Haptic | Tracking | Gizmo |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azofeifa, J.D.; Noguez, J.; Ruiz, S.; Molina-Espinosa, J.M.; Magana, A.J.; Benes, B. Systematic Review of Multimodal Human–Computer Interaction. Informatics 2022, 9, 13. https://doi.org/10.3390/informatics9010013
Azofeifa JD, Noguez J, Ruiz S, Molina-Espinosa JM, Magana AJ, Benes B. Systematic Review of Multimodal Human–Computer Interaction. Informatics. 2022; 9(1):13. https://doi.org/10.3390/informatics9010013
Chicago/Turabian StyleAzofeifa, Jose Daniel, Julieta Noguez, Sergio Ruiz, José Martín Molina-Espinosa, Alejandra J. Magana, and Bedrich Benes. 2022. "Systematic Review of Multimodal Human–Computer Interaction" Informatics 9, no. 1: 13. https://doi.org/10.3390/informatics9010013