Multiple Visual Feature Integration Based Automatic Aesthetics Evaluation of Robotic Dance Motions
Abstract
:1. Introduction
- (1)
- To imitate human dance behavior, a novel approach of automatic aesthetics evaluation of robotic dance motions is proposed.
- (2)
- Inspired by cognitive neuroscience, the approach integrates multiple visual features, which come from the visual information channel of a robot.
- (3)
- To describe the spatial features of robotic dance motion, a method named “ripple space coding” is designed.
- (4)
- Verified by simulation experiments, the highest correct ratio of aesthetic evaluation is 75%.
- (5)
- The approach is applicable to the classification problem based on action videos, such as human behavior recognition, etc.
2. Automatic Aesthetics Evaluation for Robotic Dance Motions
2.1. The Whole Framework
2.2. Extraction and Optimization of Motion History Images
2.3. Feature Extraction
2.3.1. Spatial Feature
2.3.2. Region Shape Feature
2.3.3. Contour Shape Feature
2.4. Feature Integration
2.5. Ensemble Learning
3. Experiments
4. Discussion
4.1. Visual Feature Integration
4.2. Selection of Visual Features
4.3. Influence on Robotic Dance
4.4. Practical Application
4.5. Limitation of the Proposed Approach
4.6. Comparison with the Existing Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aucouturier, J.J. Cheek to chip: Dancing robots and AI’s future. Intell. Syst. 2008, 23, 74–84. [Google Scholar] [CrossRef]
- Or, J. Towards the development of emotional dancing humanoid robots. Int. J. Soc. Robot. 2009, 1, 367–382. [Google Scholar] [CrossRef]
- Peng, H.; Zhou, C.; Hu, H.; Chao, F.; Li, J. Robotic dance in social robotics—A taxonomy. IEEE Trans. Hum.-Mach. Syst. 2015, 45, 281–293. [Google Scholar] [CrossRef]
- Peng, H.; Li, J.; Hu, H.; Zhou, C.; Ding, Y. Robotic choreography inspired by the method of human dance creation. Information 2018, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Schaal, S. Is imitation learning the route to humanoid robots? Trends Cogn. Sci. 1999, 3, 233–242. [Google Scholar] [CrossRef]
- Andry, P.; Gaussier, P.; Moga, S.; Banquet, J.P.; Nadel, J. Learning and communication via imitation: An autonomous robot perspective. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2001, 31, 431–442. [Google Scholar] [CrossRef]
- Breazeal, C.; Scassellati, B. Robots that imitate humans. Trends Cogn. Sci. 2002, 6, 481–487. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, C.; Li, J.; Peng, H. Asynchronous introspection theory: The underpinnings of phenomenal consciousness in temporal illusion. Mind. Mach. 2017, 27, 315–330. [Google Scholar] [CrossRef]
- Vircikova, M.; Sincak, P. Dance Choreography Design of Humanoid Robots using Interactive Evolutionary Computation. In Proceedings of the 3rd Workshop for Young Researchers on Human-Friendly Robotics (HFR 2010), Tübingen, Germany, 28–29 October 2010. [Google Scholar]
- Vircikova, M.; Sincak, P. Artificial Intelligence in Humanoid Systems; FEI TU of Kosice: Košice, Slovakia, 2010. [Google Scholar]
- Vircikova, M.; Sincak, P. Discovering art in robotic motion: From imitation to innovation via interactive evolution. In Proceedings of the Ubiquitous Computing and Multimedia Applications, Daejeon, Korea, 13–15 April 2011; pp. 183–190. [Google Scholar]
- Shinozaki, K.; Iwatani, A.; Nakatsu, R. Concept and construction of a robot dance system. In Proceedings of the 2007 International Conference on Mechatronics and Information Technology: Mechatronics, MEMS, and Smart Materials (ICMIT 2007), Gifu, Japan, 5–6 December 2007. [Google Scholar]
- Oliveira, J.L.; Reis, L.P.; Faria, B.M. An empiric evaluation of a real-time robot dancing framework based on multi-modal events. TELKOMNIKA Indones. J. Electr. Eng. 2012, 10, 1917–1928. [Google Scholar] [CrossRef]
- Manfrè, A.; Infantino, I.; Vella, F.; Gaglio, S. An automatic system for humanoid dance creation. Biol. Inspired Cogn. Archit. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Augello, A.; Infantino, I.; Manfrè, A.; Pilato, G.; Vella, F.; Chella, A. Creation and cognition for humanoid live dancing. Rob. Auton. Syst. 2016, 86, 128–137. [Google Scholar] [CrossRef]
- Manfré, A.; Infantino, I.; Augello, A.; Pilato, G.; Vella, F. Learning by demonstration for a dancing robot within a computational creativity framework. In Proceedings of the 1st IEEE International Conference on Robotic Computing (IRC 2017), Taichung, Taiwan, 10–12 April 2017. [Google Scholar]
- Qin, R.; Zhou, C.; Zhu, H.; Shi, M.; Chao, F.; Li, N. A music-driven dance system of humanoid robots. Int. J. Hum. Robot. 2018, 15, 1850023. [Google Scholar] [CrossRef]
- Krasnow, D.; Chatfield, S.J. Development of the ‘performance competence evaluation measure’ assessing qualitative aspects of dance performance. J. Danc. Med. Sci. 2009, 13, 101–107. [Google Scholar]
- Eaton, M. An approach to the synthesis of humanoid robot dance using non-interactive evolutionary techniques. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Manchester, UK, 13–16 October 2013. [Google Scholar]
- Peng, H.; Hu, H.; Chao, F.; Zhou, C.; Li, J. Autonomous robotic choreography creation via semi-interactive evolutionary computation. Int. J. Soc. Robot. 2016, 8, 649–661. [Google Scholar] [CrossRef]
- Li, J.; Peng, H.; Hu, H.; Luo, Z.; Tang, C. Multimodal Information Fusion for Automatic Aesthetics Evaluation of Robotic Dance Poses. Int. J. Soc. Robot. 2020, 12, 5–20. [Google Scholar] [CrossRef]
- Peng, H.; Li, J.; Hu, H.; Zhao, L.; Feng, S.; Hu, K. Feature Fusion based Automatic Aesthetics Evaluation of Robotic Dance Poses. Rob. Auton. Syst. 2019, 111, 99–109. [Google Scholar] [CrossRef]
- Farah, M.J. The Cognitive Neuroscience of Vision; Blackwell Publishing: Hoboken, NJ, USA, 2000. [Google Scholar]
- Chatterjee, A. Prospects for a cognitive neuroscience of visual aesthetics. Bull. Psychol. Arts. 2004, 4, 55–60. [Google Scholar]
- Bobick, A.F.; Davis, J.W. The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Liu, T.; Du, Q.; Yan, H. Spatial Similarity assessment of point clusters. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 1149–1153. [Google Scholar]
- Xia, G.; Tay, J.; Dannenberg, R.; Veloso, M. Autonomous robot dancing driven by beats and emotions of music. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), Valencia, Spain, 4–8 June 2012. [Google Scholar]
- Kudoh, S.; Shiratori, T.; Nakaoka, S.; Nakazawa, A.; Kanehiro, F.; Ikeuchi, K. Entertainment robot: Learning from observation paradigm for humanoid robot dancing. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008) Workshop: Art and Robots, Nice, France, 22–26 September 2008. [Google Scholar]
- Grunberg, D.; Ellenberg, R.; Kim, Y.; Oh, P. Creating an autonomous dancing robot. In Proceedings of the 2009 International Conference on Hybrid Information Technology (ICHIT 2009), Daejeon, Korea, 27–29 August 2009. [Google Scholar]
- Kim, W.Y.; Kim, Y.S. A region-based shape descriptor using Zernike moments. Signal Process. Image Commun. 2000, 16, 95–102. [Google Scholar] [CrossRef]
- Teh, C.H.; Chin, R.T. On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 1988, 10, 496–513. [Google Scholar] [CrossRef]
- Kauppinen, H.; Seppanen, T.; Pietikainen, M. An experimental comparison of autoregressive and Fourier-based descriptors in 2-D shape classification. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; Chapman and Hall/CRC: London, UK; Boca Raton, FL, USA, 2012. [Google Scholar]
- Peng, H.; Li, J.; Hu, H.; Hu, K.; Tang, C.; Ding, Y. Creating a Computable Cognitive Model of Visual Aesthetics for Automatic Aesthetics Evaluation of Robotic Dance Poses. Symmetry 2020, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Gazzaniga, M.S.; Ivry, R.B.; Mangun, G.R. Cognitive Neuroscience: The Biology of the Mind, 4th ed.; W. W. Norton & Company: New York, NY, USA, 2013. [Google Scholar]
- Stein, B.E.; Stanford, T.R.; Wallace, M.T.; Vaughan, J.W.; Jiang, W. Crossmodal spatial interactions in subcortical and cortical circuits. In Crossmodal Space and Crossmodal Attention; Spence, C., Driver, J., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 25–50. [Google Scholar]
- Holmes, N.P.; Spence, C. Multisensory integration: Space, time and superadditivity. Curr. Biol. 2005, 15, R762–R764. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Hu, H.; Wang, W.; Li, W.; Peng, H.; Wang, X. Using a Multilearner to Fuse Multimodal Features for Human Action Recognition. Math. Probl. Eng. 2020, 4358728. [Google Scholar] [CrossRef]
- Ju, Z.; Gun, L.; Hussain, A.; Mahmud, M.; Ieracitano, C. A Novel Approach to Shadow Boundary Detection Based on an Adaptive Direction-Tracking Filter for Brain-Machine Interface Applications. Appl. Sci. 2020, 10, 6761. [Google Scholar] [CrossRef]
- Dey, N.; Rajinikanth, V.; Fong, S.J.; Kaiser, M.S.; Mahmud, M. Social Group Optimization–Assisted Kapur’s Entropy and Morphological Segmentation for Automated Detection of COVID-19 Infection from Computed Tomography Images. Cogn. Comput. 2020, 12, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.M.; Kaiser, M.S.; Mahmud, M. Application of Convolutional Neural Network in Segmenting Brain Regions from MRI Data. In Proceedings of the 12th International Conference on Brain Informatics. Lecture Notes in Computer Science, Haikou, China, 13–15 December 2019. [Google Scholar]
- Mahmud, M.; Kaiser, M.S.; McGinnity, T.M.; Hussain, A. Deep Learning in Mining Biological Data. Cogn. Comput. 2021, 13, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Noor, M.B.T.; Zenia, N.Z.; Kaiser, M.S.; Mamun, S.A.; Mahmud, M. Application of deep learning in detecting neurological disorders from magnetic resonance images: A survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Inf. 2020, 7, 11. [Google Scholar] [CrossRef]
- Kuang, Q.; Jin, X.; Zhao, Q.; Zhou, B. Deep Multimodality Learning for UAV Video Aesthetic Quality Assessment. IEEE Trans. Multimed. 2020, 22, 2623–2634. [Google Scholar] [CrossRef]
- Xiao, L.; Li, S.; Li, K.; Jin, L.; Liao, B. Co-Design of Finite-Time Convergence and Noise Suppression: A Unified Neural Model for Time Varying Linear Equations with Robotic Applications. IEEE Trans. Syst. Man. Cybern. Syst. 2020, 50, 5233–5243. [Google Scholar] [CrossRef]
- Muni, M.; Parhi, D.; Kumar, P. Improved Motion Planning of Humanoid Robots Using Bacterial Foraging Optimization. Robotica 2021, 39, 123–136. [Google Scholar] [CrossRef]
- Devaraja, R.R.; Maskeliūnas, R.; Damaševičius, R. Design and Evaluation of Anthropomorphic Robotic Hand for Object Grasping and Shape Recognition. Computers 2021, 10, 1. [Google Scholar] [CrossRef]
Machine Learning Method | Correct Ratio (Accuracy) |
---|---|
KNN | 66.7% |
Logistic Regression | 45.8% |
GBDT | 54.2% |
AdaBoost | 58.3% |
Naive Bayesian | 54.2% |
MNB | 50% |
QDA | 50% |
SVM | 50% |
Decision Tree | 66.7% |
Random Forest | 70.8% |
Our Ensemble Classifier | 75% |
Actual Value | |||
---|---|---|---|
Prediction Outcome | Bad | Good | |
Bad | 10 | 4 | |
Good | 2 | 8 |
The Approach in [9,10,11] | The Approach in [12] | The Approach in [13] | Our Approach | |
---|---|---|---|---|
Information Channel | visual and non-visual | visual | visual | visual |
Feature Type Involved | kinematic | N/A | N/A | spatial feature, shape features (region and contour) |
Specific Feature | Pose sequence-based chromosome feature | dynamic, exciting, wonder, smooth, etc. | musical synchrony, variety of movements, human characterization, flexibility of control, etc. | ripple space coding, Zernike moments, curvature-based Fourier descriptors |
Aesthetic Manner | human subjective aesthetics | human subjective aesthetics | human subjective aesthetics | machine learning-based method |
Machine Learning Method Involved | N/A | N/A | N/A | KNN, logistic regression, GBDT, AdaBoost, naive Bayesian, MNB, QDA, SVM, decision tree, random forest, our ensemble classifier |
Highest Correct Ratio | N/A | N/A | N/A | 75% |
Best Feature | N/A | N/A | N/A | ripple space coding, Zernike moments, curvature-based Fourier descriptors |
Best Machine Learning Method | N/A | N/A | N/A | our ensemble classifier (including three base classifiers: three random forests) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.; Hu, J.; Wang, H.; Ren, H.; Sun, C.; Hu, H.; Li, J. Multiple Visual Feature Integration Based Automatic Aesthetics Evaluation of Robotic Dance Motions. Information 2021, 12, 95. https://doi.org/10.3390/info12030095
Peng H, Hu J, Wang H, Ren H, Sun C, Hu H, Li J. Multiple Visual Feature Integration Based Automatic Aesthetics Evaluation of Robotic Dance Motions. Information. 2021; 12(3):95. https://doi.org/10.3390/info12030095
Chicago/Turabian StylePeng, Hua, Jinghao Hu, Haitao Wang, Hui Ren, Cong Sun, Huosheng Hu, and Jing Li. 2021. "Multiple Visual Feature Integration Based Automatic Aesthetics Evaluation of Robotic Dance Motions" Information 12, no. 3: 95. https://doi.org/10.3390/info12030095
APA StylePeng, H., Hu, J., Wang, H., Ren, H., Sun, C., Hu, H., & Li, J. (2021). Multiple Visual Feature Integration Based Automatic Aesthetics Evaluation of Robotic Dance Motions. Information, 12(3), 95. https://doi.org/10.3390/info12030095