The Effects of Driving Experience on the P300 Event-Related Potential during the Perception of Traffic Scenes
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Experimental Design
2.3. Experimental Stimulus and Protocol
2.3.1. Stimulus
2.3.2. Experimental Protocol
2.4. EEG Recording
2.5. Analysis
3. Results
3.1. P300 Response
3.2. P300 Characteristics
3.3. Response to Visual Stimulus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sauerzapf, V.A. Road Traffic Crash Fatalities: An Examination of National Fatality Rates and Factors Associated with the Variation in Fatality Rates between Nations with Reference to the World Health Organization Decade of Action for Road Safety 2011–2020. Ph.D. Thesis, University of East Anglia, Norwich, UK, 2012. [Google Scholar]
- Japanese National Police Agency. The Occurrence of Traffic Accidents and the Traffic Violation Control in 2017; Japanese National Police Agency: Tokyo, Japan, 2017.
- Evans, L. The dominant role of driver behavior in traffic safety. Am. J. Public Health 1996, 86, 784–786. [Google Scholar] [CrossRef] [Green Version]
- Borsos, A.; Birth, S.; Vollpracht, H.J. The role of human factors in road design. In Proceedings of the 6th IEEE International Conference on Cognitive Infocommunications, Gyor, Hungary, 19–21 October 2015; pp. 363–367. [Google Scholar]
- Vlkovský, M.; Šmerek, M.; Michálek, J. Cargo securing during transport depending on the type of a road. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 042001. [Google Scholar] [CrossRef]
- Dingus, T.A.; Guo, F.; Lee, S.; Antin, J.F.; Perez, M.; Buchanan-King, M.; Hankey, J. Driver crash risk factors and prevalence evaluation using naturalistic driving data. PNAS 2016, 113, 2636–2641. [Google Scholar] [CrossRef] [Green Version]
- Treat, J.R.; Tumbas, N.S.; McDonald, S.T.; Shinar, D.; Hume, R.D.; Mayer, R.E.; Stansifer, R.L.; Castellan, N.J. Tri-Level Study of the Causes of Traffic Accidents: Final Report. Volume I: Causal Factor Tabulations and Assessments; Indiana University Institute for Research in Public Safety: Bloomington, IN, USA, 1979. [Google Scholar]
- Rumar, K. The role of perceptual and cognitive filters in observed behaviour. In Human Behaviour and Traffic Safety; Springer: Boston, MA, USA, 1985; pp. 151–167. [Google Scholar]
- Allahyari, T.; Saraji, G.N.; Adl, J.; Hosseini, M.; Iravani, M.; Younesian, M.; Kass, S.J. Cognitive failures, driving errors and driving accidents. Int. J. Occup. Saf. Ergon. 2008, 14, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Petridou, E.; Moustakim, M. Human factors in the causation of road traffic crashes. Eur. J. Epidemiol. 2000, 16, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Bucsuházy, K.; Matuchová, E.; Zůvala, R.; Moravcová, P.; Kostíková, M.; Mikulec, R. Human factors contributing to the road traffic accident occurrence. Transp. Res. Procedia 2020, 45, 555–561. [Google Scholar] [CrossRef]
- Wako, S. ITS: R & D and perception as the open information and telecommunications infrastructure. Inst. Electron. Inf. Commun. Eng. A 1998, 81, 465–466. [Google Scholar]
- Klauer, S.G.; Dingus, T.A.; Neale, V.L.; Sudweeks, J.D.; Ramsy, D.J. The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic Study Data; US-DOT HS810-594; National Technical Information Service: Springfield, VA, USA, 2006.
- Miyaji, M.; Danno, M.; Oguri, K. Analysis of driver behavior based on experiences of road traffic incidents investigated by means of questionnaires for the reduction of road traffic accidents. Int. J. ITS Res. 2008, 6, 47–56. [Google Scholar]
- Underwood, G.; Chapman, P.; Crundall, D. Experience and Visual Attention in Driving. In Human Factors of Visual and Cognitive Performance in Driving; CRC Press: Boca Raton, FL, USA, 2009; pp. 89–116. [Google Scholar]
- Lin, C.; Chen, S.; Ko, L.; Wang, Y. EEG-based brain dynamics of driving distraction. In Proceedings of the The 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 1497–1500. [Google Scholar]
- Lin, C.; Chen, S.; Chiu, T.; Lin, H.; Ko, L. Spatial and temporal EEG dynamics of dual-task driving performance. J. Neuroeng. Rehabil. 2011, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Almahasneh, H.; Chooi, W.; Kamel, N.; Malik, A.S. Deep in thought while driving: An EEG study on drivers’ cognitive distraction. Transp. Res. Part F Traffic Psychol. Behav. 2014, 26-A, 218–226. [Google Scholar] [CrossRef]
- Karthaus, M.; Wascher, E.; Getzmann, S. Effects of visual and acoustic distraction on driving behavior and EEG in young and older car drivers: A driving simulation study. Front. Aging Neurosci. 2018, 10, 420. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, G.; Fazeen, M.; Dantu, R. Detecting driver distraction using stimuli-response EEG analysis. arXiv 2019, arXiv:1904.09100v1. [Google Scholar]
- Wang, H.; Liu, X.; Li, J.; Xu, T.; Bezerianos, A.; Sun, Y.; Wan, F. Driving fatigue recognition with functional connectivity based on phase synchronization. In IEEE Transactions on Cognitive and Developmental Systems; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Lal, S.K.; Craig, A. A critical review of the psychophysiology of driver fatigue. Biol. Psychol. 2001, 55, 173–194. [Google Scholar] [CrossRef]
- Kundinger, T.; Sofra, N.; Riener, A. Assessment of the potential of wrist-worn wearable sensors for driver drowsiness detection. Sensors 2020, 20, 1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stancin, I.; Cifrek, M.; Jovic, A. A review of EEG signal features and their application in driver drowsiness detection systems. Sensors 2021, 21, 3786. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.; Tran, Y.; Wijesuriya, N.; Nguyen, H. Regional brain wave activity changes associated with fatigue. Psychophysiology 2012, 49, 574–582. [Google Scholar] [CrossRef]
- Simon, M.; Schmidt, E.A.; Kincses, W.E.; Fritzsche, M.; Bruns, A.; Aufmuth, C.; Bogdan, M.; Rosenstiel, W.; Schrauf, M. EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions. Clin. Neurophysiol. 2011, 112, 1168–1178. [Google Scholar] [CrossRef]
- Brouwer, A.M.; Hogervorst, M.A.; van Erp, J.B.F.; Heffelaar, T.; Zimmerman, P.H.; Oostenveld, R. Estimating workload using EEG spectral power and ERPs in the n-back task. J. Neural Eng. 2012, 9, 045008. [Google Scholar] [CrossRef]
- Roy, R.N.; Charbonnier, S.; Campagne, A.; Bonnet, S. Efficient mental workload estimation using task-independent EEG features. J. Neural Eng. 2016, 13, 026019. [Google Scholar] [CrossRef]
- Haufe, S.; Treder, M.S.; Gugler, M.F.; Sagebaum, M.; Curio, G.; Blankertz, B. EEG potentials predict upcoming emergency brakings during simulated driving. J. Neural Eng. 2011, 8, 056001. [Google Scholar] [CrossRef]
- Teng, T.; Bi, L.; Fan, X. Using EEG to recognize emergency situations for brain-controlled vehicles. In Proceedings of the IEEE Intelligent Vehicles Symposium, Seoul, Korea, 28 June–5 July 2015; pp. 1305–1309. [Google Scholar]
- Nguyen, T.H.; Chung, W.Y. Detection of driver braking intention using EEG signals during simulated driving. Sensors 2019, 19, 2863. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.T.; Wu, R.C.; Jung, T.P.; Liang, S.F.; Huang, T.Y. Estimating driving performance based on EEG spectrum analysis. EURASIP J. Adv. Signal Process. 2005, 2005, 3155–3174. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Takahashi, H.; Sugimachi, T.; Nakano, K.; Suda, Y. The study of driver’s brain activity and behaviour on DS test using fNIRS. IFAC-PapersOnLine 2019, 51, 244–249. [Google Scholar] [CrossRef]
- Inagaki, K.; Maruno, T.; Yamamoto, K. Evaluation of EEG activation pattern on the experience of visual perception in the driving. IEICE Trans. Info. Sys. 2020, E103, 2032–2034. [Google Scholar] [CrossRef]
- Nobukawa, S.; Wagatsuma, N.; Inagaki, K. Gamma band functional connectivity enhanced by driving experience. In Proceedings of the 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), Nara, Japan, 9–11 March 2021. [Google Scholar]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef]
- Carrasco, M. Visual attention: The past 25 years. Vis. Res. 2011, 51, 1484–1525. [Google Scholar] [CrossRef] [Green Version]
- Sato, K. Visual search and peripheral vision performance by novice and experienced drivers. IATSS Rev. 1993, 19, 191–199. [Google Scholar]
- Mourant, R.R.; Rockwell, T.H. Strategies of visual search by novice and experimental drivers. Hum. Factors J. Hum. Factors Ergon. Soc. 1972, 14, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Underwood, G.; Chapman, P.; Brocklehurst, N.; Underwood, J.; Crundall, D. Visual attention while driving: Sequences of eye fixations made by experienced and novice drivers. Ergonomics 2003, 46, 629–6463. [Google Scholar] [CrossRef]
- Crundall, D.; Underwood, G. Effects of experience and processing demands on visual information acquisition in drivers. Ergonomics 1998, 41, 448–458. [Google Scholar] [CrossRef]
- Alberti, C.F.; Shahar, A.; Crundall, D. Are experienced drivers more likely than novice drivers to benefit from driving simulations with a wide field of view? Transp. Res. Part F Traffic Psychol. Behav. 2014, 27, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Falkmer, T.; Gregersen, N.P. Fixation patterns of learner drivers with and without cerebral palsy (CP) when driving in real traffic environments. Transp. Res. Part F Traffic Psychol. Behav. 2001, 4, 171–185. [Google Scholar] [CrossRef]
- Konstantopoulos, P.; Chapman, P.; Crundall, D. Driver’s visual attention as a function of driving experience and visibility. Using a driving simulator to explore drivers’ eye movements in day, night and rain driving. Accid. Anal. Prev. 2010, 42, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Underwood, G.; Chapman, P.; Bowden, K.; Crundall, D. Visual search while driving: Skill and awareness during inspection of the scene. Transp. Res. Part F Traffic Psychol. Behav. 2002, 5, 87–97. [Google Scholar] [CrossRef]
- Shioiri, S.; Honjyo, H.; Kashiwase, Y.; Matsumiya, K.; Kuriki, I. Visual attention spreads broadly but selects information locally. Sci. Rep. 2016, 6, 35513. [Google Scholar] [CrossRef] [Green Version]
- Friedman, D.; Cycowicz, Y.M.; Gaeta, H. The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci. Biobehav. Rev. 2001, 25, 355–373. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An Integrative Theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [Green Version]
- Donchin, E.; Kramer, A.F.; Wickens, C.D. Applications of brain event-related potentials to problems in engineering psychology. In Psychophysiology: Systems, Processes, and Applications; Coles, M.G.H., Donchin, E., Porges, S.W., Eds.; Guilford Press: New York, NY, USA, 1986; pp. 702–718. [Google Scholar]
- Kramer, A.F.; Sirevaag, E.; Braune, R. A psychophysiological assessment of operator workload during simulated flight missions. Hum. Factors 1987, 29, 145–160. [Google Scholar] [CrossRef]
- Suzuki, J.; Nittonol, H.; Hori, T. Level of interest in video clips modulates event-related potentials to auditory probes. Int. J. Psychophysiol. 2005, 55, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickens, C.D.; Kramer, A.F.; Vanasse, L.; Donchin, E. Performance of concurrent tasks: A psychophysiological analysis of the reciprocity of information-processing resources. Science 1980, 221, 1080–1082. [Google Scholar] [CrossRef] [PubMed]
- Allison, B.Z.; Polich, J. Workload assessment of computer gaming using a single-stimulus event-related potential paradigm. Biol. Psychol. 2008, 77, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Sirevaag, E.J.; Kramer, A.F.; Wickens, C.D.; Reisweber, M.; Strayer, D.L.; Grenell, J.F. Assessment of pilot performance and mental workload in rotary wing aircraft. Ergonomics 1993, 36, 1121–1140. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.F.; Trejo, L.J.; Humphrey, D. Assessment of mental workload with task-irrelevant auditory probes. Biol. Psychol. 1995, 40, 83–100. [Google Scholar] [CrossRef]
- Tanishige., R.; Doman, K.; Deguchi, D.; Mekada, Y.; Ide, I.; Murase, H. A study on the prediction of driver’s pedestrian detectability considering characteristics of human fields-of-view while driving. IEICE PRMU2014-196 2015, 114, 223–228. [Google Scholar]
- Jasper, H.H. The ten twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 371–375. [Google Scholar]
- Stern, J.M.; Engel, J. Atlas of EEG Patterns; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Kumar, J.S.; Bhuvaneswari, P. Analysis of electroencephalography (EEG) signals and its categorization–A study. Procedia Eng. 2012, 38, 2525–2536. [Google Scholar] [CrossRef] [Green Version]
- Nashmi, R.; Mendonça, A.J.; MacKay, W.A. EEG rhythms of the sensorimotor region during hand movements. Electroencephalogr. Clin. Neurophysiol. 1994, 91, 456–467. [Google Scholar] [CrossRef]
- Danko, S.; Shemyakina, N.; Nagornova, Z.V.; Starchenko, M. Comparison of the effects of the subjective complexity and verbal creativity on EEG spectral power parameters. Hum. Physiol. 2009, 35, 381–383. [Google Scholar] [CrossRef]
- Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Map. 2007, 28, 1178–1193. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.M.; Schoffelen, J.M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 2016, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Nobukawa, S.; Kikuchi, M.; Takahashi, T. Changes in functional connectivity dynamics with aging: A dynamical phase synchronization approach. Neuroimage 2018, 188, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Imperatori, L.S.; Monica, M.; Cecchetti, L.; Canales-Johnson, A.; Ricciardi, E.; Siclari, F.; Pietrini, P.; Chennu, S.; Bernardim, G. EEG functional connectivity metrics wPLI and wSMI account for distinct types of brain functional interactions. Sci. Rep. 2019, 9, 8894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvy, J.; Thakor, N.; Bezerianos, A.; Li, J. Between-frequency topographical and dynamic highorder functional connectivity for driving drowsiness assessment. IEEE Trans. Neural Syst. Rehab. Eng. 2019, 27, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Nobukawa, S.; Yamanishi, T.; Ueno, K.; Mizukami, K.; Nishimura, H.; Takahashi, T. High phase synchronization in alpha band activity in older subjects with high creativity. Front. Hum. Neurosci. 2020, 14, 420. [Google Scholar] [CrossRef]
Parameter | Experienced Drivers (n = 8) | Beginner Drivers (n = 8) |
---|---|---|
Perception rate for visual target (%), and number of responded targets. | 96.3 (231/240) | 94.1 (226/240) |
Latency (s). | 0.451 ± 0.030 | 0.540 ± 0.061 |
Peak amplitude (mV). | 8.82 ± 1.73 | 8.13 ± 2.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inagaki, K.; Wagatsuma, N.; Nobukawa, S. The Effects of Driving Experience on the P300 Event-Related Potential during the Perception of Traffic Scenes. Int. J. Environ. Res. Public Health 2021, 18, 10396. https://doi.org/10.3390/ijerph181910396
Inagaki K, Wagatsuma N, Nobukawa S. The Effects of Driving Experience on the P300 Event-Related Potential during the Perception of Traffic Scenes. International Journal of Environmental Research and Public Health. 2021; 18(19):10396. https://doi.org/10.3390/ijerph181910396
Chicago/Turabian StyleInagaki, Keiichiro, Nobuhiko Wagatsuma, and Sou Nobukawa. 2021. "The Effects of Driving Experience on the P300 Event-Related Potential during the Perception of Traffic Scenes" International Journal of Environmental Research and Public Health 18, no. 19: 10396. https://doi.org/10.3390/ijerph181910396