Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dengue Data
2.3. Greenness Index
2.4. Risk Factors
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Spatial Autocorrelation Analysis
3.3. Spearman’s Rank Correlation Coefficient
3.4. Generalized Linear Mixed Models
3.5. Sensitivity Test and Stratified Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shragai, T.; Tesla, B.; Murdock, C.; Harrington, L.C. Zika and chikungunya: Mosquito-borne viruses in a changing world. Ann. N. Y. Acad. Sci. 2017, 1399, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Leta, S.; Beyene, T.J.; De Clercq, E.M.; Amenu, K.; Revie, C.W.; Kraemer, M.U.G. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 2018, 67, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; et al. Global spread of dengue virus types: Mapping the 70 year history. Trends Microbiol. 2014, 22, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.V.; Vaughn, D.W. Dengue: An escalating problem. BMJ 2002, 324, 1563–1566. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Robinson, A.W. Enhancement of Infection by Pre-Existing Non-Neutralizing Antibodies to Cross-Reactive Flaviviruses: Ramifications for Vaccination against Dengue and Zika. J. Vaccines Clin. Trials 2017, 1, 1–4. [Google Scholar]
- Tomashek, K.M.; Gregory, C.J.; Rivera Sánchez, A.; Bartek, M.A.; Garcia Rivera, E.J.; Hunsperger, E.; Muñoz-Jordán, J.L.; Sun, W. Dengue Deaths in Puerto Rico: Lessons Learned from the 2007 Epidemic. PLoS Negl. Trop. Dis. 2012, 6, e1614. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, M. Dengue fever is massively under-reported in India, hampering our response. BMJ 2012, 345, e8574. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.E.A.; Quam, M.B.; Wilder-Smith, A. Epidemiology of dengue: Past, present and future prospects. Clin. Epidemiol. 2013, 5, 299–309. [Google Scholar] [PubMed]
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl. Trop. Dis. 2012, 6, e1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, P.Y.; Su, C.L.; Liao, T.L.; Yang, C.F.; Chang, S.F.; Lin, C.C.; Chang, M.C.; Hu, H.C.; Huang, J.H. Molecular Characterization of Dengue Viruses Imported Into Taiwan during 2003–2007: Geographic Distribution and Genotype Shift. Am. J. Trop. Med. Hyg. 2009, 80, 1039–1046. [Google Scholar] [PubMed]
- Kuan, M.M.; Chang, F.Y. Airport sentinel surveillance and entry quarantine for dengue infections following a fever screening program in Taiwan. BMC Infect. Dis. 2012, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Kuan, M.M.; Lin, T.; Chuang, J.H.; Wu, H.S. Epidemiological trends and the effect of airport fever screening on prevention of domestic dengue fever outbreaks in Taiwan, 1998–2007. Int. J. Infect. Dis. 2010, 14, e693–e697. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.H.; Wang, C.Y.; Teng, H.J.; Lin, C.; Lu, L.C.; Jian, S.W.; Chang, N.T.; Wen, T.H.; Wu, J.W.; Liu, D.P.; et al. A dengue vector surveillance by human population-stratified ovitrap survey for Aedes (Diptera: Culicidae) adult and egg collections in high dengue-risk areas of Taiwan. J. Med. Entomol. 2013, 50, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Silvestri, S.; Belluco, E.; Saltarin, A.; Chillemi, G.; Marani, M. Environmental forcing and density-dependent controls of Culex pipiens abundance in a temperate climate (Northeastern Italy). Ecol. Model. 2014, 272, 301–310. [Google Scholar] [CrossRef]
- Lebl, K.; Brugger, K.; Rubel, F. Predicting Culex pipiens/restuans population dynamics by interval lagged weather data. Parasit. Vectors 2013, 6, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandari, K.P.; Raju, P.; Sokhi, B.S. Application of GIS modeling for dengue fever prone area based on socio-cultural and environmental factors—A case study of Delhi city zone. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 165–170. [Google Scholar]
- Vanwambeke, S.O.; van Benthem, B.H.; Khantikul, N.; Burghoorn-Maas, C.; Panart, K.; Oskam, L.; Lambin, E.F.; Somboon, P. Multi-level analyses of spatial and temporal determinants for dengue infection. Int. J. Health Geogr. 2006, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, M.S.; Tripathi, N.K.; Tipdecho, T.; Thongbu, T.; Kerdthong, P.; Souris, M. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health 2012, 12, 853. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, D.; Rubio, A.; Velázquez, S.M.; Schweigmann, N.; Wiegand, T. Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina. Acta Tropica 2005, 95, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.H.; Uejio, C.K.; Walker, K.; Ramberg, F.; Moreno, R.; Rosales, C.; Gameros, M.; Mearns, L.O.; Zielinski-Gutierrez, E.; Janes, C.R. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX border. Ecohealth 2010, 7, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Sames, W.J.; Kim, H.C.; Chong, S.T.; Harrison, B.A.; Won-Ja, L.; Rueda, L.M.; Klein, T.A. Anopheles lindesayi japonicus Yamada (Diptera: Culicidae) in Korea: Comprehensive review, new collection records, and description of larval habitats. J. Vector Ecol. 2008, 33, 99–106. [Google Scholar] [CrossRef]
- Ferraguti, M.; la Puente, J.M.; Roiz, D.; Ruiz, S.; Soriguer, R.; Figuerola, J. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 2016, 6, 29002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machault, V.; Vignolles, C.; Pagès, F.; Gadiaga, L.; Gaye, A.; Sokhna, C.; Trape, J.F.; Lacaux, J.P.; Rogier, C. Spatial heterogeneity and temporal evolution of malaria transmission risk in Dakar, Senegal, according to remotely sensed environmental data. Malar. J. 2010, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meza-Ballesta, A.; Gónima, L. The influence of climate and vegetation cover on the occurrence of dengue cases (2001–2010). Rev. Salud-Publica. (Bogota) 2014, 16, 293–306. [Google Scholar] [PubMed]
- Troyo, A.; Fuller, D.O.; Calderón-Arguedas, O.; Solano, M.E.; Beier, J.C. Urban structure and dengue fever in Puntarenas, Costa Rica. Singap. J. Trop. Geogr. 2009, 30, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.V.; Albertini, M.R.; Costa-da-Silva, A.L.; Suesdek, L.; Franceschi, N.C.S.; Bastos, N.M.; Katz, G.; Cardoso, V.A.; Castro, B.C.; Capurro, M.L.; et al. São Paulo urban heat islands have a higher incidence of dengue than other urban areas. Braz. J. Infect. Dis. 2015, 19, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Wang, Y.; Li, Y.; Meng, Y.; Chen, Q.; Ma, J.; Gao, G.F. The Effects of Socioeconomic and Environmental Factors on the Incidence of Dengue Fever in the Pearl River Delta, China, 2013. PLoS Negl. Trop. Dis. 2015, 9, e0004159. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control. Taiwan National Infectious Disease Statistics System for Dengue Virus Surveillance. Taiwan CDC: Taipei, Taiwan, 2016. Available online: http://nidss.cdc.gov.tw/en/SingleDisease.aspx?dc=1&dt=2&disease=061 (accessed on 2 August 2018).
- Gascon, M.; Cirach, M.; Martínez, D.; Dadvand, P.; Valentín, A.; Plasència, A.; Nieuwenhuijsen, M.J. Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: The case of Barcelona city. Urban Forest. Urban Green. 2016, 19, 88–94. [Google Scholar] [CrossRef]
- Zellweger, R.M.; Cano, J.; Mangeas, M.; Taglioni, F.; Mercier, A.; Despinoy, M.; Menkès, C.E.; Dupont-Rouzeyrol, M.; Nikolay, B.; Teurlai, M. Socioeconomic and environmental determinants of dengue transmission in an urban setting: An ecological study in Nouméa, New Caledonia. PLoS Negl. Trop. Dis. 2017, 11, e0005471. [Google Scholar] [CrossRef] [PubMed]
- Fairos, W.Y.W.; Azaki, W.H.W.; Alias, L.M.; Wah, Y.B. Modelling dengue fever (DF) and dengue haemorrhagic fever (DHF) outbreak using Poisson and Negative Binomial model. World Acad. Sci. Eng. Technol. 2010, 62, 903–908. [Google Scholar]
- Paterson, S.; Lello, J. Mixed models: Getting the best use of parasitological data. Trends Parasitol. 2003, 19, 370–375. [Google Scholar] [CrossRef]
- Mohebbi, M.; Wolfe, R.; Jolley, D. A poisson regression approach for modelling spatial autocorrelation between geographically referenced observations. BMC Med. Res. Methodol. 2011, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.W.; Comrie, A.C. Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model. Int. J. Biometeorol. 2010, 54, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.W.; Amerasinghe, P.H.; Morrison, A.C.; Lorenz, L.H.; Clark, G.G.; Strickman, D.; Kittayapong, P.; Edman, J.D. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood feeding frequency. J. Med. Entomol. 2000, 37, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Wilke, A.B.B.; Medeiros-Sousa, A.R.; Ceretti-Junior, W.; Marrelli, M.T. Mosquito populations dynamics associated with climate variations. Acta Tropica 2017, 166, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Ewing, D.A.; Cobbold, C.A.; Purse, B.V.; Nunn, M.A.; White, S.M. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. J. Theor. Biol. 2016, 400, 65–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Focks, D.A.; Haile, D.G.; Daniels, E.; Mount, G.A. Dynamic Life Table Model for Aedes aegypti (Diptera: Culicidae): Analysis of the Literature and Model Development. J. Med. Entomol. 1993, 30, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Ciota, A.T.; Matacchiero, A.C.; Kilpatrick, A.M.; Kramer, L.D. The Effect of Temperature on Life History Traits of Culex Mosquitoes. J. Med. Entomol. 2014, 51, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Madder, D.J.; Surgeoner, G.A.; Helson, B.V. Number of Generations, Egg Production, and Developmental Time of Culex Pipiens and Culex Restuans (Diptera: Culicidae) in Southern Ontario. J. Med. Entomol. 1983, 20, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.W.; Comrie, A.C.; Ernst, K. Climate and dengue transmission: Evidence and implications. Environ. Health Perspect. 2013, 121, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Sirisena, P.; Noordeen, F.; Kurukulasuriya, H.; Romesh, T.A.; Fernando, L. Effect of Climatic Factors and Population Density on the Distribution of Dengue in Sri Lanka: A GIS Based Evaluation for Prediction of Outbreaks. PLoS ONE 2017, 12, e0166806. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.V.; Donalisio, M.R.; Silveira, L.V. Spatial distribution of dengue incidence and socio-environmental conditions in Campinas, São Paulo State, Brazil, 2007. Cad. Saude Publica 2013, 29, 1522–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mena, N.; Troyo, A.; Bonilla-Carrión, R.; Calderón-Arguedas, O. Factors associated with incidence of dengue in Costa Rica. Rev. Panam. Salud Publica 2011, 29, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Tuan, Y.C.; Hung, M.N.; Lin, L.J.; Shih, W.Y.; Huang, C.C.; Chang, C.; Chen, M.J.; You, C.Y. Analysis on dengue vector density survey in Kaohsiung and Pingtung areas of southern Taiwan, 2004–2008. Epidemiol. Bull. 2009, 25, 462–485. [Google Scholar]
- Saifur, R.G.M.; Hassan, A.A.; Dieng, H.; Salmah, M.R.C.; Saad, A.R.; Satho, T. Temporal and spatial distribution of dengue vector mosquitoes and their habitat patterns in Penang Island, Malaysia. J. Am. Mosq. Control Assoc. 2013, 29, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.S.; Fang, C.T.; Liu, C.M.; Wen, T.H.; Tsai, K.H.; King, C.C. The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics. PLoS Negl. Trop. Dis. 2010, 4, e775. [Google Scholar] [CrossRef] [PubMed]
- Cheong, Y.L.; Leitão, P.J.; Lakes, T. Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spat. Spatio. Temporal. Epidemiol. 2014, 10, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Kruger, J. Parks, Recreation, and Public Health Collaborative. Environ. Health Insights 2008, 2, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.W.; Morrison, A.C. Longitudinal Field Studies Will Guide a Paradigm Shift in Dengue Prevention. In Vector Biology, Ecology and Control; Springer: Dordrecht, The Netherlands, 2010; pp. 139–161. ISBN 978-90-481-2457-2. [Google Scholar]
- Hsu, J.C.; Hsieh, C.L.; Lu, C.Y. Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010–2015. Int. J. Infect. Dis. 2017, 54, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.Y.; Chen, P.L.; Chuang, K.T.; Shu, Y.C.; Chien, Y.W.; Perng, G.C.; Ko, W.C.; Ko, N.Y. Symptoms associated with adverse dengue fever prognoses at the time of reporting in the 2015 dengue outbreak in Taiwan. PLoS Negl. Trop. Dis. 2017, 11, e0006091. [Google Scholar] [CrossRef] [PubMed]
- Chuang, T.W.; Ng, K.C.; Nguyen, T.L.; Chaves, L.F. Epidemiological Characteristics and Space-Time Analysis of the 2015 Dengue Outbreak in the Metropolitan Region of Tainan City, Taiwan. Int. J. Environ. Res. Public Health 2018, 15, 396. [Google Scholar] [CrossRef] [PubMed]
Greenness Type | Mean ± Standard Deviation | ||
---|---|---|---|
Tainan | Kaohsiung | Pingtung | |
Farm % | 36.2 ± 9.5 | 17.4 ± 7.0 | 41.7 ± 9.4 |
Forest % | 8.8 ± 3.9 | 12.2 ± 7.3 | 20.3 ± 12.8 |
Park % | 1.5 ± 0.1 | 4.4 ± 1.1 | 1.0 ± 0.1 |
Grass % | 3.5 ± 0.3 | 1.8 ± 0.2 | 4.2 ± 0.3 |
All green land use % | 52.5 ± 13.3 | 40.2 ± 16.6 | 68.7 ± 10.4 |
NDVI | 0.45 ± 0.04 | 0.41 ± 0.04 | 0.59 ± 0.03 |
Type | Incidence | |||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||
RR | Coefficients | p-Value | RR | Coefficient | p-Value | |
Farm ‰ | 0.999 | −0.001 | <0.001 | 0.999 | −0.001 | <0.001 |
Forest ‰ | 0.999 | −0.001 | <0.001 | 0.999 | −0.001 | <0.001 |
Park ‰ | 1.002 | 0.002 | <0.001 | 1.001 | 0.001 | <0.001 |
Grass ‰ | 0.996 | −0.004 | <0.001 | 0.997 | −0.003 | <0.001 |
All green land use ‰ | 0.999 | −0.001 | <0.001 | 0.999 | −0.001 | <0.001 |
NDVI | 0.782 | −0.246 | <0.001 | 0.998 | −0.244 | <0.001 |
Type | Kaohsiung 1 | Number 2 | ||||
---|---|---|---|---|---|---|
RR | Coefficients | p-Value | RR | Coefficients | p-Value | |
Farm % | 0.998 | −0.002 | <0.001 | 0.999 | −0.001 | <0.001 |
Forest % | 0.998 | −0.002 | <0.001 | 0.999 | −0.001 | <0.001 |
Park % | 1.001 | 0.001 | 0.021 | 1.001 | 0.001 | <0.001 |
Grass % | 0.996 | −0.004 | <0.001 | 0.997 | −0.003 | <0.001 |
All green land use % | 0.999 | −0.001 | <0.001 | 0.999 | −0.001 | <0.001 |
NDVI | 0.802 | −0.221 | <0.001 | 0.998 | −0.244 | <0.001 |
Type | 2014 | 2015 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number 1 | Incidence 2 | Number 1 | Incidence 2 | |||||||||
RR | Coefficients | p-Value | RR | Coefficients | p-Value | RR | Coefficients | p-Value | RR | Coefficient | p-Value | |
Farm % | 0.978 | −0.022 | <0.001 | 0.999 | −0.001 | <0.001 | 0.976 | −0.024 | <0.001 | 0.998 | −0.002 | <0.001 |
Forest % | 0.955 | −0.046 | 0.532 | 0.999 | −0.001 | <0.001 | 0.960 | −0.041 | 0.702 | 1.000 | 0 | 0.016 |
Park % | 1.003 | 0.003 | 0.478 | 1.001 | 0.001 | <0.001 | 1.016 | 0.016 | <0.001 | 1.001 | 0.001 | 0.049 |
Grass % | 0.984 | −0.016 | 0.288 | 0.999 | −0.001 | <0.001 | 0.970 | −0.030 | <0.001 | 0.996 | −0.004 | <0.001 |
All green land use % | 0.980 | −0.020 | <0.001 | 0.999 | −0.001 | <0.001 | 0.978 | −0.022 | <0.001 | 0.999 | −0.001 | <0.001 |
NDVI | 0.047 | −3.052 | <0.001 | 0.913 | −0.091 | <0.001 | 0.025 | −3.674 | <0.001 | 0.688 | −0.374 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-C.; Tam, T.Y.T.; Chern, Y.-R.; Lung, S.-C.C.; Chen, N.-T.; Wu, C.-D. Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness. Int. J. Environ. Res. Public Health 2018, 15, 1869. https://doi.org/10.3390/ijerph15091869
Huang C-C, Tam TYT, Chern Y-R, Lung S-CC, Chen N-T, Wu C-D. Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness. International Journal of Environmental Research and Public Health. 2018; 15(9):1869. https://doi.org/10.3390/ijerph15091869
Chicago/Turabian StyleHuang, Chi-Chieh, Tuen Yee Tiffany Tam, Yinq-Rong Chern, Shih-Chun Candice Lung, Nai-Tzu Chen, and Chih-Da Wu. 2018. "Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness" International Journal of Environmental Research and Public Health 15, no. 9: 1869. https://doi.org/10.3390/ijerph15091869
APA StyleHuang, C. -C., Tam, T. Y. T., Chern, Y. -R., Lung, S. -C. C., Chen, N. -T., & Wu, C. -D. (2018). Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness. International Journal of Environmental Research and Public Health, 15(9), 1869. https://doi.org/10.3390/ijerph15091869