Blockchain Solution for Buildings’ Multi-Energy Flexibility Trading Using Multi-Token Standards
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
Algorithm 1 Market session order structure |
1. struct Order1155 { |
2. bytes32 id; |
3. orderType: {OFFER, BID} |
4. prosumerAddress: buildingA, |
5. tokenIds: [MORNING_ELECTRICTY_TOKEN, MORNING_HEAT_TOKEN, |
EVENING_ELECTRICITY_TOKEN, EVENING_HEAT_TOKEN], |
6. quantities: […], |
7. prices: […] |
8. } |
Algorithm 2 Function for registering heat or electricity orders |
1. function registerOrder(GridOperableLibrary.Order1155 memory order) external override returns (bytes32){ |
2. … |
3. If (order. orderType==GridOperableLibrary.OrderType.OFFER){ |
4. for (uint i;i< order.tokenIds.length;i++){ |
5. _mint (order.prosumerAddress, order.tokenIds[i], order.quantities[i]); |
6. } |
7. } |
8. … |
9. order.id = bytes32(orderSize++); |
10. _orders[order.id] = order; |
11. for (uint k =0; k<order.involvedMarkets.length;k++) { |
12. _marketsTypeOrders [GridOperableLibrary.MarketSessionType1155(k)][or |
der.orderSide].push(order.id);} |
13. emit OrderRegistered(order.prosumerAddress,order.id); |
14. return order.id; |
15. } |
Algorithm 3 Determine the market session properties based on the token type. |
1. function determineReferencePrice (uint tokenId) public returns (uint) { |
2. … |
3. If (checkMask(tokenId, |
4. marketSessionMap [GridOperableLibrary.MarketSessionType1155(i)].tokenMask)){ |
5. Return AssetMarketSession1155(marketSessionMap [MarketSessionType1155(i)]. |
6. marketSession).getReferencePrice(); |
7. … |
8. } |
Algorithm 4 Using ERC-1155 for creating tokens for energy payment |
1. function registerProsumer(address prosumerAddress, address prosumerCertificate, |
uint amount) returns (bool){ |
2. if (isValidCertificate(prosumerAddress,prosumerCertificate)) |
3. if (checkDeposit(prosumerAddress, amount)){ |
4. _mint(prosumerAddress, MONEY_TOKEN, amount); return true;} |
5. return false; |
6. } |
Algorithm 5 Using the token to determine the market session for placing a building order |
1. function determineInvolvedMarkets (uint[] memory tokenIds) public |
returns (uint [] memory) { |
2. … |
3. for (uint i = 0; i< tokenIds.length;i++){ |
4. for (int j = 0; j< size;j++) { |
5. if(checkMask(tokenIds[i], marketSessionMap [GridOperableLibrary. |
MarketSessionType1155(j)].tokenMask)){ |
6. GridOperableLibrary.MarketSessionType1155 typeSession = |
GridOperableLibrary.MarketSessionType1155(j); |
7. Session memory session = marketSessionMap[typeSession]; |
8. involvedMarkets[counter] =uint(session.sessionType); |
9. } |
10. } |
11. } |
12. return involvedMarkets |
13. } |
Algorithm 6 ERC-1155 orders and market type |
1. mapping (GridOperableLibrary.MarketSessionType1155 |
2. =>mapping(GridOperableLibrary.OrderSide=>bytes32[])) internal _marketsTypeOrders; |
3. enum MarketSessionType1155 {HEAT, ELECTRICITY} |
Algorithm 7 ERC-1155 flexibility trade structure |
1. struct Trade1155 { |
2. bytes32 id; |
3. bytes32 buyOrderId; |
4. bytes32 sellOrderId; |
5. address payable prosumerBuyingAddress; |
6. address payable prosumerSellingAddress; |
7. uint[] energyTokenIds; |
8. uint[] quantities; |
9. uint[] prices; |
10. } |
Algorithm 8 Transaction settlement and using ERC-1155 batch transactions |
1. function settle ( GridOperableLibrary.Trade1155[] memory trades) external override { |
2. for (uint i;i<trades.length; i++){ |
3. GridOperableLibrary.Trade1155 memory trade = trades[i]; |
4. GridOperableLibrary.Order1155 memory sellingOrder = _orders[trade.sellOrderId]; |
5. GridOperableLibrary.Order1155 memory buyingOrder = _orders[trade.buyOrderId]; |
6. bytes memory y = abi.encode(0); |
7. this.safeBatchTransferFrom(trade.prosumerSellingAddress, |
trade.prosumerBuyingAddress,trade.energyTokenIds, trade.quantities, y); |
8. this.safeTransferFrom(trade.prosumerBuyingAddress, |
trade.prosumerSellingAddress, MONEY_TOKEN, trade.totalDue, y); |
9. } |
10. } |
4. Evaluation Results
Algorithm 9 Flexibility bids and offers using ERC-115. |
let order1 = { |
orderSide: OFFER, |
prosumerAddress: producerA, |
tokenIds: [MORNING_ELECTRICTY_TOKEN, MORNING_HEAT_TOKEN, |
EVENING_ELECTRICITY_TOKEN, EVENING_HEAT_TOKEN], |
quantities: [100,100,100,200], |
prices: [10,15,10,15] } |
let order2 = { |
orderSide: BID, |
prosumerAddress: Consumer1, |
tokenIds: [MORNING_ELECTRICTY_TOKEN, EVENING_ELECTRICITY_TOKEN], |
quantities: [10,10], |
prices: [15, 15] } |
Algorithm 10 Example of ERC-1155 tokens’ mining and order registration results |
ERC1155.TransferSingle( |
_operator: <indexed> 0x627306090abaB3A6e1400e9345bC60c78a8BEf57 (type: address), |
_from: <indexed> 0x0000000000000000000000000000000000000000 (type: address), |
_to: <indexed> 0x627306090abaB3A6e1400e9345bC60c78a8BEf57 (type: address), |
_id: MORNING_ELECTRICITY_TOKEN (type: uint256), |
_value: 70 (type: uint256) |
) |
ERC1155.TransferSingle( |
_operator: <indexed> 0x627306090abaB3A6e1400e9345bC60c78a8BEf57 (type: address), |
_from: <indexed> 0x0000000000000000000000000000000000000000 (type: address), |
_to: <indexed> 0x627306090abaB3A6e1400e9345bC60c78a8BEf57 (type: address), |
_id: MORNING_HEAT_TOKEN (type: uint256), |
_value: 80 (type: uint256) |
) |
Algorithm 11 Batch trade processing between Producer A and Consumer 3 |
let trade1 = { |
buyOrderId: ’0x0000000000000000000000000000000000000000000000000000000000000005’, |
sellOrderId: ’0x0000000000000000000000000000000000000000000000000000000000000001’, |
prosumerBuyingAddress: client3, |
prosumerSellingAddress: producer1, |
energyTokenIds: [MORNING_HEAT_TOKEN, EVENING_HEAT_TOKEN, |
EVENING_ELECTRICITY_TOKEN], |
quantities: [10,10,10], |
prices: [15,15,10] |
} |
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IRENA. Innovation Landscape for a Renewable-Powered Future: Solutions to Integrate Variable Renewables; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Li, H.; Wang, Z.; Hong, T.; Piette, M.A. Energy flexibility of residential buildings: A systematic review of characterization and quantification methods and applications. Adv. Appl. Energy 2021, 3, 100054. [Google Scholar] [CrossRef]
- Cioara, T.; Anghel, I.; Salomie, I.; Antal, M.; Pop, C.; Bertoncini, M.; Arnone, D.; Po, F. Exploiting data centres energy flexibility in smart cities: Business scenarios. Inf. Sci. 2019, 476, 392–412. [Google Scholar] [CrossRef]
- Canale, L.; Di Fazio, A.R.; Russo, M.; Frattolillo, A.; Dell’isola, M. An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings. Energies 2021, 14, 1078. [Google Scholar] [CrossRef]
- Martirano, L.; Habib, E.; Parise, G.; Greco, G.; Manganelli, M.; Massarella, F.; Parise, L. Demand Side Management in Microgrids for Load Control in Nearly Zero Energy Buildings. IEEE Trans. Ind. Appl. 2017, 53, 1769–1779. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Naidoo, R.M.; Bansal, R.C.; Siti, M.W.; Tungadio, D.H. An overview of renewable energy resources and grid integration for commercial building applications. J. Energy Storage 2020, 29, 101385. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, C.; Xu, Y.; Fang, J.; Pan, Y. A critical review of the performance evaluation and optimization of grid interactions between zero-energy buildings and power grids. Sustain. Cities Soc. 2022, 86, 104123. [Google Scholar] [CrossRef]
- Lepisto, J.; Heine, P.; Lundell, M.; Jarventausta, P.; Repo, S. Urban Energy Transition and Heating of Apartment Buildings. In Proceedings of the 18th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, 13–15 September 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Al Dakheel, J.; Del Pero, C.; Aste, N.; Leonforte, F. Smart buildings features and key performance indicators: A review. Sustain. Cities Soc 2020, 61, 102328. [Google Scholar] [CrossRef]
- Karlessi, T.; Kampelis, N.; Kolokotsa, D.; Santamouris, M.; Standardi, L.; Isidori, D.; Cristalli, C. The Concept of Smart and NZEB Buildings and the Integrated Design Approach. Procedia Eng. 2017, 180, 1316–1325. [Google Scholar] [CrossRef]
- Van Cutsem, O.; Dac, D.H.; Boudou, P.; Kayal, M. Cooperative energy management of a community of smart-buildings: A Blockchain approach. Int. J. Electr. Power Energy Syst. 2019, 117, 105643. [Google Scholar] [CrossRef]
- Cioara, T.; Antal, M.; Mihailescu, V.T.; Antal, C.D.; Anghel, I.M.; Mitrea, D. Blockchain-Based Decentralized Virtual Power Plants of Small Prosumers. IEEE Access 2021, 9, 29490–29504. [Google Scholar] [CrossRef]
- Wang, H.; Ma, S.; Guo, C.; Wu, Y.; Dai, H.-N.; Wu, D. Blockchain-Based Power Energy Trading Management. ACM Trans. Internet Technol. 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Z.; Heijnen, P.; Warnier, M. A peer-to-peer market mechanism incorporating multi-energy coupling and cooperative behaviors. Appl. Energy 2022, 311, 118572. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, N.; Kang, C.; Li, M.; Huo, M. From demand response to integrated demand response: Review and prospect of research and application. Prot. Control. Mod. Power Syst. 2019, 4, 12. [Google Scholar] [CrossRef]
- Salo, S.; Hast, A.; Jokisalo, J.; Kosonen, R.; Syri, S.; Hirvonen, J.; Martin, K. The Impact of Optimal Demand Response Control and Thermal Energy Storage on a District Heating System. Energies 2019, 12, 1678. [Google Scholar] [CrossRef]
- Yuan, X.; Lindroos, L.; Jokisalo, J.; Kosonen, R.; Pan, Y.; Jin, H. Demand response potential of district heating in a swimming hall in Finland. Energy Build. 2021, 248, 111149. [Google Scholar] [CrossRef]
- Ala-Kotila, P.; Vainio, T.; Heinonen, J. Demand Response in District Heating Market—Results of the Field Tests in Student Apartment Buildings. Smart Cities 2020, 3, 157–171. [Google Scholar] [CrossRef]
- Suhonen, J.; Jokisalo, J.; Kosonen, R.; Kauppi, V.; Ju, Y.; Janßen, P. Demand Response Control of Space Heating in Three Different Building Types in Finland and Germany. Energies 2020, 13, 6296. [Google Scholar] [CrossRef]
- Arabzadeh, V.; Alimohammadisagvand, B.; Jokisalo, J.; Siren, K. A novel cost-optimizing demand response control for a heat pump heated residential building. Build. Simul. 2018, 11, 533–547. [Google Scholar] [CrossRef]
- Faezeh, J.; Mohammad Amin, M.; Kazem, Z.; Behnam, M.I.; Mousa, M.; Amjad, A.M. Multi-energy microgrids: An optimal despatch model for water-energy nexus. Sustain. Cities Soc. 2022, 77, 103573. [Google Scholar]
- Yao, Y.; Li, C.; Xie, K.; Hu, B.; Shao, C.; Yan, Z. Two-Stage Robust Optimization of Multi-energy System Considering Integrated Demand Response. In Proceedings of the 11th International Conference on Power and Energy Systems (ICPES), Shanghai, China, 18–20 December 2021; pp. 783–789. [Google Scholar] [CrossRef]
- Chen, J.J.; Qi, B.X.; Rong, Z.K.; Peng, K.; Zhao, Y.L.; Zhang, X.H. Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement. Energy 2021, 217, 119387. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Markovska, N.; Abazi, A.; Duić, N. The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review. Renew. Sustain. Energy Rev. 2021, 138, 110489. [Google Scholar] [CrossRef]
- Pop, C.; Cioara, T.; Antal, M.; Anghel, I.; Salomie, I.; Bertoncini, M. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids. Sensors 2018, 18, 162. [Google Scholar] [CrossRef] [PubMed]
- Antal, C.; Cioara, T.; Antal, M.; Mihailescu, V.; Mitrea, D.; Anghel, I.; Salomie, I.; Raveduto, G.; Bertoncini, M.; Croce, V.; et al. Blockchain based decentralized local energy flexibility market. Energy Rep. 2021, 7, 5269–5288. [Google Scholar] [CrossRef]
- Karandikar, N.; Chakravorty, A.; Rong, C. Blockchain Based Transaction System with Fungible and Non-Fungible Tokens for a Community-Based Energy Infrastructure. Sensors 2021, 21, 3822. [Google Scholar] [CrossRef] [PubMed]
- Crosara, M.; Olivieri, L.; Spoto, F.; Tagliaferro, F. Fungible and non-fungible tokens with snapshots in Java. Clust. Comput. 2022, 1–18. [Google Scholar] [CrossRef]
- Toderean, L.; Antal, C.; Antal, M.; Mitrea, D.; Cioara, T.; Anghel, I.; Salomie, I. A Lockable ERC20 Token for Peer to Peer Energy Trading. In Proceedings of the 2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 28–30 October 2021; pp. 145–151. [Google Scholar] [CrossRef]
- Munoz, M.F.; Zhang, K.; Amara, F. ZipZap: A Blockchain Solution for Local Energy Trading. In Proceedings of the 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Shanghai, China, 2–5 May 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Lilliu, F.; Vinyals, M.; Denysiuk, R.; Recupero, D.R. A novel payment scheme for trading renewable energy in smart grid. In Proceedings of the Tenth ACM International Conference on Future Energy Systems, New York, NY, USA, 25–28 June 2019; pp. 111–115. [Google Scholar] [CrossRef]
- Mihaylov, M.; Jurado, S.; Narcis, A.; Van Moffaert, K.; Magrans, I.; Nowe, A. NRGcoin: Virtual currency for trading of renewable energy in smart grids. In Proceedings of the 11th International Conference on the European Energy Market (EEM14), Krakow, Poland, 28–30 May 2014; pp. 1–6. [Google Scholar]
- Petkov, I.; Mavromatidis, G.; Knoeri, C.; Allan, J.; Hoffmann, V.H. MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits. Appl. Energy 2022, 314, 118901. [Google Scholar] [CrossRef]
- Robinson, P. Survey of crosschain communications protocols. Comput. Networks 2021, 200, 108488. [Google Scholar] [CrossRef]
- Kanak, A.; Ugur, N.; Ergun, S. A Visionary Model son Blockchain-based Accountability for Secure and Collaborative Digital Twin Environments. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 3512–3517. [Google Scholar] [CrossRef]
- Zuo, Y. Tokenizing Renewable Energy Certificates (RECs)—A Blockchain Approach for REC Issuance and Trading. IEEE Access 2022, 10, 134477–134490. [Google Scholar] [CrossRef]
- Weingärtner, T. Tokenization of Physical Assets and the Impact of IoT and AI. In Proceedings of the European Union Blockchain Observatory and Forum, Maraka, Spain, 11–13 November 2019. [Google Scholar]
- Bekrar, A.; El Cadi, A.A.; Todosijevic, R.; Sarkis, J. Digitalizing the Closing-of-the-Loop for Supply Chains: A Transportation and Blockchain Perspective. Sustainability 2021, 13, 2895. [Google Scholar] [CrossRef]
- Davydov, V.; Gazaryan, A.; Madhwal, Y.; Yanovich, Y. Token Standard for Heterogeneous Assets Digitization into Commodity. In Proceedings of the ICBTA 2019: 2019 2nd International Conference on Blockchain Technology and Applications, New York, NY, USA, 9–11 December 2019. [Google Scholar] [CrossRef]
- Popov, E.; Veretennikova, A.; Fedoreev, S. The Model of OTC Securities Market Transformation in the Context of Asset Tokenization. Mathematics 2022, 10, 3441. [Google Scholar] [CrossRef]
- Idelberger, F.; Mezei, P. Non-fungible tokens. Internet Policy Rev. 2022, 11. [Google Scholar] [CrossRef]
- dos Santos, R.B.; Torrisi, N.M.; Pantoni, R.P. Third Party Certification of Agri-Food Supply Chain Using Smart Contracts and Blockchain Tokens. Sensors 2021, 21, 5307. [Google Scholar] [CrossRef] [PubMed]
- Madhwal, Y. Implementation of Tokenised Supply Chain Using Blockchain Technology. In Proceedings of the 2020 21st IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (IEEE WoWMoM 2020), Cork, Ireland, 31 August–3 September 2020; pp. 66–67. [Google Scholar] [CrossRef]
- Perrons, R.K.; Cosby, T. Applying blockchain in the geoenergy domain: The road to interoperability and standards. Appl. Energy 2020, 262, 114545. [Google Scholar] [CrossRef]
- Munoz, M.F.; Zhang, K.; Shahzad, A.; Ouhimmou, M. LogLog: A Blockchain Solution for Tracking and Certifying Wood Volumes. In Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), New York, NY, USA, 30 January–1 February 2021. [Google Scholar] [CrossRef]
- Madhwal, Y.; Chistiakov, I.; Yanovich, Y. Logging Multi-Component Supply Chain Production in Blockchain. In Proceedings of the 2021 4th International Conference on Computers in Management and Business, New York, NY, USA, 30 January–1 February 2021; pp. 83–88. [Google Scholar] [CrossRef]
- Masking and the C/C++ Bitwise Operators. 2023. Available online: https://www.clivemaxfield.com/coolbeans/masking-and-the-c-c-bitwise-operators/ (accessed on 1 March 2023).
Condition | No. Bits | Mask Position | Scenario and Alternatives | Precondition |
---|---|---|---|---|
NFT/FT token | 1 | 255 | Used for checking ERC20 compliance | |
Hour | 5 | 250–254 individually determined | 24 h of the day for which the order is submitted | Is an NFT |
Energy type | 4 | 226–230 | Electricity or heat | Is an NFT |
Order ID | Market Participant | Order Type | Hour | Energy Type | Token ID | Quantity (kWh) | Order Price in Fungible Token |
---|---|---|---|---|---|---|---|
1 | Producer A | Sell | 10 a.m. | Electricity | 10AME | 100 | 10 |
1 | Producer A | Sell | 10 a.m. | Heat | 10AMH | 100 | 15 |
1 | Producer A | Sell | 6 p.m. | Electricity | 6PME | 100 | 10 |
1 | Producer A | Sell | 6 p.m. | Heat | 6PMH | 200 | 15 |
2 | Producer B | Sell | 10 a.m. | Electricity | 10AME | 20 | 5 |
2 | Producer B | Sell | 6 p.m. | Electricity | 6PME | 10 | 5 |
Order ID | Market Participant | Order Type | Hour | Energy Amount (kWh) | Energy Type | Price in Fungible Tokens | Deposit |
---|---|---|---|---|---|---|---|
3 | Consumer 1 | Buy | 10 a.m. | 10 | Electricity | 15 | 150 |
3 | Consumer 1 | Buy | 6 p.m. | 10 | Electricity | 15 | 150 |
4 | Consumer 2 | Buy | 10 a.m. | 30 | Heat | 20 | 600 |
4 | Consumer 2 | Buy | 6 p.m. | 30 | Heat | 20 | 600 |
5 | Consumer 3 | Buy | 10 a.m. | 10 | Electricity | 10 | 100 |
5 | Consumer 3 | Buy | 6 p.m. | 10 | Electricity | 10 | 100 |
5 | Consumer 3 | Buy | 10 a.m. | 10 | Heat | 15 | 150 |
5 | Consumer 3 | Buy | 6 p.m. | 10 | Heat | 15 | 150 |
Trade ID | Seller | Sell Order ID | Buyer | Buy Order ID | Hour | Energy Amount (kWh) | Energy Type | Price Fungible Tokens | Price Difference |
---|---|---|---|---|---|---|---|---|---|
Batch trade between Producer A and Consumer 3 | |||||||||
1 | Producer A | 1 | Consumer 3 | 5 | 10 a.m. | 10 | Heat | 15 | 15 − 15 = 0 |
1 | Producer A | 1 | Consumer 3 | 5 | 6 p.m. | 10 | Heat | 15 | 15 − 15 = 0 |
1 | Producer A | 1 | Consumer 3 | 5 | 6 p.m. | 10 | Electricity | 10 | 15 − 10 = 5 |
Batch trade between Producer A and Consumer 2 | |||||||||
2 | Producer A | 1 | Consumer 2 | 4 | 10 a.m. | 30 | Heat | 15 | 20 − 15 = 5 |
2 | Producer A | 1 | Consumer 2 | 4 | 6 p.m. | 30 | Heat | 15 | 20 − 15 = 5 |
Trades of Producer B | |||||||||
3 | Producer B | 2 | Consumer 1 | 3 | 10 a.m. | 10 | Electricity | 5 | 15 − 5 = 10 |
3 | Producer B | 2 | Consumer 1 | 3 | 6 p.m. | 10 | Electricity | 5 | 10 − 5 = 5 |
4 | Producer B | 2 | Consumer 3 | 5 | 10 a.m. | 10 | Electricity | 5 | 10 − 5 = 5 |
No. of Markets | Energy Tokens | Heat, Electricity Interoperability | Transfer Type | Cost (Gas) | Normalized Cost |
---|---|---|---|---|---|
1 | 3 | Independent | Single token transfer | 21,910,209 | ~87,000,000 |
1 | 6 | Independent | Transfer per token type | 8,733,132 | 17,466,264 |
1 | 6 | Independent | Batch transfer | 8,066,255 | 16,132,510 |
2 | 6 | Interoperability | Transfer per token type | 16,843,588 | 16,843,588 |
2 | 6 | Interoperability | Batch transfer—interoperable | 15,430,220 | 15,430,220 |
Energy Tokens | Operation | Quantity | Transactions/ Prosumers | Markets Level Aggregated Costs (Gas) | Cost/Transactions |
---|---|---|---|---|---|
1 | Register orders | 15 | 30/10 | 8,691,137 | 289,704 |
3 | Register orders | 15 | 90/15 | 17,130,596 | 190,339 |
6 | Register orders | 15 | 180/20 | 29,512,337 | 163,957 |
1 | Transfer trades | 10 | 21/10 | 3,157,370 | 150,350 |
3 | Transfer trades | 10 | 61/15 | 8,066,255 | 132,233 |
6 | Transfer trades | 10 | 121/20 | 15,430,220 | 127,522 |
Operation | Used Gas | Tokens (FT/NFT) | Transactions | Used Cost/Token |
---|---|---|---|---|
Registering as a prosumer and minting the equiv. money token | 220,618 | 200,000 FT | 2 | ~1 |
Registering an ask order and minting the energy tokens | 6,309,833 | 2400 NFT | 25 | 6309 |
Register a bid order | 2,212,427 | 0 | 1 | 916 |
Transfer tokens based on trade | 2,964,830 | 2400 NFT 24,000 FT | 25 | 1235 per NFT or 118,560 per energy token type |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, O.; Cioara, T.; Anghel, I. Blockchain Solution for Buildings’ Multi-Energy Flexibility Trading Using Multi-Token Standards. Future Internet 2023, 15, 177. https://doi.org/10.3390/fi15050177
Marin O, Cioara T, Anghel I. Blockchain Solution for Buildings’ Multi-Energy Flexibility Trading Using Multi-Token Standards. Future Internet. 2023; 15(5):177. https://doi.org/10.3390/fi15050177
Chicago/Turabian StyleMarin, Oana, Tudor Cioara, and Ionut Anghel. 2023. "Blockchain Solution for Buildings’ Multi-Energy Flexibility Trading Using Multi-Token Standards" Future Internet 15, no. 5: 177. https://doi.org/10.3390/fi15050177
APA StyleMarin, O., Cioara, T., & Anghel, I. (2023). Blockchain Solution for Buildings’ Multi-Energy Flexibility Trading Using Multi-Token Standards. Future Internet, 15(5), 177. https://doi.org/10.3390/fi15050177