A Nighttime Vehicle Detection Method with Attentive GAN for Accurate Classification and Regression
Abstract
:1. Introduction
- An improved GAN is used to acquire representative features, which is named Attentive GAN. U-Net with an attention module is used as the generator and the global and local discriminator is used to balance the local dark regions and overall dark area;
- To get accurate target localization, a multiple local regression is employed in the regression branch, which predicts multiple bounding box offset;
- For precise classification, an improved RoI pooling method is used in the classification branch which assigns different weights to different sampling points based on deformable RoI pooling.
2. Related Work
3. Method
3.1. Attentive GAN Module
3.1.1. Attentive Generator
3.1.2. Discriminator
3.1.3. Training Loss of Attentive GAN Module
3.2. Vehicle Detection Module
3.2.1. Multiple Local Regression
3.2.2. Improved RoI Pooling
3.2.3. The Loss of Vehicle Detection Module
4. Experiments
4.1. Datasets and Implementation
4.2. The Results of Comparisons
4.3. Qualitative Analysis
4.4. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GAN | Generative Adversarial Network |
RoI | Region of Interest |
R-CNN | Region-Convolutional Neural Network |
BDD | Berkeley Deep Driving |
ITS | Intelligent Transportation Systems |
ADS | Automatic Driving System |
DPM | Deformable Parts Model |
CNN | Convolutional Neural Network |
LSGAN | Least-square Generative Adversarial Network |
VGG | Visual Geometry Group Network |
RPN | Region Proposal Network |
FPN | Feature Pyramid Network |
SSD | Single Shot MultiBox Detector |
SGD | Stochastic Gradient Descent |
IoU | Intersection over Union |
References
- Deva, P.W.; Srihari, T.; Kalimuthu, Y. Intelligent Transport Systems (ITS); Recent Challenges in Science, Engineering and Technology; Krishna Publication House: Gujarat, India, 2021; pp. 130–146. [Google Scholar]
- Song, H.; Zhu, J.; Jiang, Y. Two-Stage Merging Network for Describing Traffic Scenes in Intelligent Vehicle Driving System. IEEE Trans. Intell. Transp. Syst. 2021, 99, 1–12. [Google Scholar] [CrossRef]
- Cheng, J.; Mi, H.; Huang, Z.; Gao, S.; Zang, D.; Liu, C. Connectivity Modeling and Analysis for Internet of Vehicles in Urban Road Scene. IEEE Access 2018, 6, 2692–2702. [Google Scholar] [CrossRef]
- Cheng, J.J.; Yuan, G.Y.; Zhou, M.C.; Gao, S.C.; Liu, C. A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene. IEEE Internet Things J. 2020, 7, 8410–8418. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Xu, H. Vehicle Detection Based on Multifeature Extraction and Recognition Adopting RBF Neural Network on ADAS System. Complexity 2020, 2020, 8842297. [Google Scholar] [CrossRef]
- Farag, W. A lightweight vehicle detection and tracking technique for advanced driving assistance systems. J. Intell. Fuzzy Syst. 2020, 39, 2693–2710. [Google Scholar] [CrossRef]
- Zhao, M.; Zhong, Y.; Sun, D. Accurate and efficient vehicle detection framework based on SSD algorithm. IET Image Process. 2021, 15, 3094–3104. [Google Scholar] [CrossRef]
- Sudha, D.; Priyadarshini, J. An intelligent multiple vehicle detection and tracking using modified vibe algorithm and deep learning algorithm. Soft Comput. 2020, 24, 17417–17429. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, W. Robust Vehicle Detection and Counting Algorithm Adapted to Complex Traffic Environments with Sudden Illumination Changes and Shadows. Sensors 2020, 20, 2686. [Google Scholar] [CrossRef]
- Yin, G.; Yu, M.; Wang, M.; Hu, Y.; Zhang, Y. Research on highway vehicle detection based on faster R-CNN and domain adaptation. Appl. Intell. 2021, 1–16. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, D.; Wang, Y.; Cheng, J.; Gao, S. A Novel Method for Predicting Vehicle State in Internet of Vehicles. Mob. Inf. Syst. 2018, 2018, 9728328. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.J.; Cao, C.R.; Zhou, M.C.; Liu, C.; Jiang, C.J. A Dynamic Evolution Mechanism for IoV Community in an Urban Scene. IEEE Internet Things J. 2020, 8, 7521–7530. [Google Scholar] [CrossRef]
- Cheng, J.; Cheng, J.; Zhou, M.; Liu, F.; Gao, S.; Liu, C. Routing in Internet of Vehicles: A Review. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2339–2352. [Google Scholar] [CrossRef]
- Arabi, S.; Haghighat, A.; Sharma, A. A deep-learning-based computer vision solution for construction vehicle detection. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 753–767. [Google Scholar] [CrossRef]
- Ghosh, R. On-road vehicle detection in varying weather conditions using faster R-CNN with several region proposal networks. Multimed. Tools Appl. 2021, 80, 25985–25999. [Google Scholar] [CrossRef]
- Kiran, V.K.; Parida, P.; Dash, S. Vehicle Detection and Classification: A Review; Abraham, A., Panda, M., Pradhan, S., Garcia-Hernandez, L., Ma, K., Eds.; Innovations in Bio-Inspired Computing and Applications. IBICA 2019. Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2021; Volume 1180. [Google Scholar] [CrossRef]
- Cheng, J.; Yuan, G.; Zhou, M.; Gao, S.; Liu, C.; Duan, H. A Fluid Mechanics-Based Data Flow Model to Estimate VANET Capacity. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2603–2614. [Google Scholar] [CrossRef]
- Wan, L.; Eigen, D.; Fergus, R. End-to-end integration of a convolution network, deformable parts model and non-maximum suppression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; IEEE: Boston, MA, USA, 2015; pp. 851–859. [Google Scholar]
- Chen, D.Y.; Peng, Y.J. Frequency-tuned taillight-based nighttime vehicle braking warning system. IEEE Sens. J. 2012, 12, 3285–3292. [Google Scholar] [CrossRef]
- Kim, J.; Baek, J.; Kim, E. A Novel On-Road Vehicle Detection Method Using $\pi $ HOG. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3414–3429. [Google Scholar] [CrossRef]
- Agarap, A.F. An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image classification. arXiv 2017, arXiv:1712.03541. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Cunningham, P.; Delany, S.J. k-Nearest neighbour classifiers. arXiv 2007, arXiv:2004.04523. [Google Scholar]
- Zeiler, M.; Fergus, R. Visualizing and Understanding Convolutional Neural Networks. In Proceedings of European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 818–833. [Google Scholar]
- Chen, L.; Zou, Q.; Pan, Z.; Lai, D.; Cao, D. Surrounding Vehicle Detection Using an FPGA Panoramic Camera and Deep CNNs. IEEE Trans. Intell. Transp. Syst. 2019, 21, 5110–5122. [Google Scholar] [CrossRef]
- Han, X.; Chang, J.; Wang, K. Real-time object detection based on YOLO-v2 for tiny vehicle object. Procedia Comput. Sci. 2021, 183, 61–72. [Google Scholar] [CrossRef]
- Chen, W.; Qiao, Y.; Li, Y. Inception-SSD: An improved single shot detector for vehicle detection. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Wang, H.; Lou, X.; Cai, Y.; Li, Y.; Chen, L. Real-Time Vehicle Detection Algorithm Based on Vision and Lidar Point Cloud Fusion. J. Sens. 2019, 2019, 8473980. [Google Scholar] [CrossRef] [Green Version]
- Tajar, A.T.; Ramazani, A.; Mansoorizadeh, M. A lightweight Tiny-YOLOv3 vehicle detection approach. J. Real-Time Image Process. 2021, 1–13. [Google Scholar] [CrossRef]
- Liu, W.; Liao, S.; Hu, W. Towards Accurate Tiny Vehicle Detection in Complex Scenes. Neurocomputing 2019, 347, 24–33. [Google Scholar] [CrossRef]
- Cui, G.; Wang, S.; Wang, Y.; Liu, Z.; Yuan, Y.; Wang, Q. Preceding Vehicle Detection Using Faster R-CNN Based on Speed Classification Random Anchor and Q-Square Penalty Coefficient. Electronics 2019, 8, 1024. [Google Scholar] [CrossRef] [Green Version]
- Tahir, H.; Khan, M.S.; Tariq, M.O. Performance Analysis and Comparison of Faster R-CNN, Mask R-CNN and ResNet50 for the Detection and Counting of Vehicles. In Proceedings of the 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 19–20 February 2021. [Google Scholar]
- Lyu, W.; Lin, Q.; Guo, L.; Wang, C.; Yang, Z.; Xu, W. Vehicle detection based on an imporved Faster R-CNN method. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2020, E104, 587–590. [Google Scholar] [CrossRef]
- Huang, S.; He, Y.; Chen, X.A. M-YOLO: A Nighttime Vehicle Detection Method Combining Mobilenet v2 and YOLO v3. In Proceedings of Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1883, p. 012094. [Google Scholar]
- Nguyen, H. Improving Faster R-CNN framework for fast vehicle detection. Math. Probl. Eng. 2019, 2019, 3808064. [Google Scholar] [CrossRef]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision; IEEE: Santiago, Chile, 2015; pp. 1440–1448. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Hu, J.; Sun, Y.; Xiong, S. Research on the Cascade Vehicle Detection Method Based on CNN. Electronics 2021, 10, 481. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2014; pp. 2672–2680. [Google Scholar]
- Sharma, M.; Makwana, M.; Upadhyay, A.; Singh, A.P.; Chaudhury, S. Robust Image Colorization Using Self Attention Based Progressive Generative Adversarial Network. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Zhang, T.; Li, Y.; Takahashi, S. Underwater image enhancement using improved generative adversarial network. Concurr. Comput. Pract. Exp. 2020, 33, e5841. [Google Scholar] [CrossRef]
- Lin, C.T.; Huang, S.W.; Wu, Y.Y.; Lai, S.H. GAN-Based Day-to-Night Image Style Transfer for Nighttime Vehicle Detection. IEEE Trans. Intell. Transp. Syst. 2020, 22, 951–963. [Google Scholar] [CrossRef]
- Shao, X.; Wei, C.; Shen, Y.; Wang, Z. Feature Enhancement Based on CycleGAN for Nighttime Vehicle Detection. IEEE Access 2020, 9, 849–859. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN. arXiv 2018, arXiv:1807.00734. [Google Scholar]
- Mao, X.; Li, Q.; Xie, H.; Lau, Y.K.; Wang, Z.; Smolley, S.P. Least squares generative adversarial networks. In Proceedings of 2017 IEEE International Conference on Computer Vision, ICCV; IEEE: Venice, Italy, 2017; pp. 2813–2821. [Google Scholar]
- Webster, B.R.; Anthony, S.E.; Scheirer, W.J. Psyphy: A psychophysics driven evaluation framework for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2280–2286. [Google Scholar] [CrossRef] [Green Version]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; IEEE: Honolulu, HI, USA, 2017; pp. 6924–6932. [Google Scholar]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Honolulu, HI, USA, 2017; pp. 2117–2125. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. Proc. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision IEEE; IEEE: Venice, Italy, 2017; pp. 764–773. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; IEEE: Seattle, WA, USA, 2018; pp. 2633–2642. [Google Scholar]
- Wang, J.; Kumbasar, T. Parameter Optimization of Interval Type-2 Fuzzy Neural Networks Based on PSO and BBBC Methods. IEEE/CAA J. Autom. Sin. 2019, 6, 250–260. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, M.; Wang, Y.; Cheng, J.; Yachi, H.; Wang, J. Dendritic Neuron Model With Effective Learning Algorithms for Classification, Approximation, and Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 601–614. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; IEEE: Salt Lake City, UT, USA, 2017; pp. 6154–6162. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision; IEEE: Venice, Italy, 2017; pp. 2999–3007. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; Volume 9905, pp. 21–37. [Google Scholar]
Method | Backbone | AP | AP50 | AP75 | APS | APM | APL |
---|---|---|---|---|---|---|---|
Faster R-CNN | ResNet101 with FPN | 35.7 | 58.2 | 38.8 | 8 | 32.1 | 56.2 |
Cascade R-CNN | ResNet101 with FPN | 39.3 | 61.9 | 41.7 | 14 | 35.8 | 58.1 |
Mask R-CNN | ResNet101 with FPN | 32.3 | 56.1 | 32.9 | 9.3 | 29 | 51.7 |
RetinaNet | ResNet101 with FPN | 32.9 | 52.7 | 34.5 | 7.3 | 31.2 | 51 |
SSD | VGG16 | 29.9 | 53 | 30.2 | 5.2 | 26.8 | 48.8 |
Ours | ResNet101 with FPN | 41.5 | 62.8 | 45.4 | 19.5 | 38 | 59.2 |
Baseline | Attentive GAN | Multiple Local Regression | Improved RoI Pooling | AP | AP50 | AP75 |
---|---|---|---|---|---|---|
✓ | 35.7 | 58.2 | 38.8 | |||
✓ | ✓ | 38.6 | 62 | 42.7 | ||
✓ | ✓ | 37.6 | 63 | 39.7 | ||
✓ | ✓ | 36.6 | 61 | 38.5 | ||
✓ | ✓ | ✓ | ✓ | 41.5 | 62.8 | 45.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Qiu, T.; Wang, J.; Qi, W. A Nighttime Vehicle Detection Method with Attentive GAN for Accurate Classification and Regression. Entropy 2021, 23, 1490. https://doi.org/10.3390/e23111490
Liu Y, Qiu T, Wang J, Qi W. A Nighttime Vehicle Detection Method with Attentive GAN for Accurate Classification and Regression. Entropy. 2021; 23(11):1490. https://doi.org/10.3390/e23111490
Chicago/Turabian StyleLiu, Yan, Tiantian Qiu, Jingwen Wang, and Wenting Qi. 2021. "A Nighttime Vehicle Detection Method with Attentive GAN for Accurate Classification and Regression" Entropy 23, no. 11: 1490. https://doi.org/10.3390/e23111490