A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation
Abstract
:1. Introduction
- (1)
- We propose a multi-scale feature fusion retinal vessel segmentation method based on U-Net.
- (2)
- Four transformations—rotating, mirroring, shifting and cropping—are used as data augmentation strategies to improve the generalization ability of the proposed method.
- (3)
- We design a cost-sensitive loss function based on the Dice coefficient and cross entropy, which improves the classification effect of categories with a small sample number.
2. Proposed Method
2.1. U-Net Model
2.2. MSFFU-Net
2.2.1. Multi-Scale Feature Extraction Encoder
2.2.2. Feature Fusion Decoder
2.3. Loss Function Design
2.4. Dataset
2.4.1. DRIVE
2.4.2. STARE
2.5. Data Augmentation
2.6. Data Preprocessing
- (1)
- Divide into multiple sub-blocks. The retinal blood vessel image was divided into sub-block of the same size and not overlapping. Each sub-block containing the number of pixels as M. The larger the sub-block, the more obvious the enhancement, but the more the image details were lost. In the proposed method, set M = 8 × 8. The size of the original image was 512 × 512, and the size of each sub-block was 64 × 64.
- (2)
- Calculate the histogram. Calculate the histogram distribution h(x) of each sub-block, where x is the gray value of each pixel in the image, ranging from 0 to 255.
- (3)
- Calculate the shear threshold . As shown in Equation (8):
- (4)
- Redistribution of pixels. Count the number of pixel points above the threshold as , and calculate the increment of gray value of each pixel as . Finally, the assigned threshold as :
- (5)
- Pixel gray value reconstruction. Bilinear interpolation was used to reconstruct the gray value of the center pixel of each row molecule block.
2.7. Experiment Setup
2.8. Evaluation Metrics
3. Results and Discussion
3.1. Comparison with U-Net Model
3.1.1. Qualitative Analysis
3.1.2. Quantitative Analysis
3.2. Comparison with the State-of-the-Art Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khawaja, A.; Khan, T.M.; Khan, M.A.U.; Nawaz, S.J. A Multi-Scale Directional Line Detector for Retinal Vessel Segmentation. Sensors 2019, 19, 4949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafiz, T.; Jarin, I.; Fattah, S.A.; Shahnaz, C. Retinal Blood Vessel Segmentation Using Residual Block Incorporated U-Net Architecture and Fuzzy Inference System. In Proceedings of the 2018 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Chonburi, Thailand, 14–16 December 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 106–109. [Google Scholar]
- Yang, D.; Ren, M.; Xu, B. Retinal Blood Vessel Segmentation with Improved Convolutional Neural Networks. J. Med. Imaging Health Inf. 2019, 9, 1112–1118. [Google Scholar] [CrossRef]
- Dasgupta, A.; Singh, S. A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 248–251. [Google Scholar] [CrossRef] [Green Version]
- Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S. Blood vessel segmentation methodologies in retinal images—A survey. Comput. Methods Programs Biomed. 2012, 108, 407–433. [Google Scholar] [CrossRef]
- Tang, P.; Liang, Q.; Yan, X.; Zhang, D.; Coppola, G.; Sun, W. Multi-proportion channel ensemble model for retinal vessel segmentation. Comput. Biol. Med. 2019, 111, 103352. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.; Tan, N.; Chen, L. Automatic Retinal Blood Vessel Segmentation Based on Fully Convolutional Neural Networks. Symmetry 2019, 11, 1112. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, S.; Chatterjee, S.; Katz, N.; Nelson, M.; Goldbaum, M. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 1989, 8, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Hoover, A.W.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Miri, M.S.; Mahloojifar, A. Retinal Image Analysis Using Curvelet Transform and Multistructure Elements Morphology by Reconstruction. IEEE Trans. Biomed. Eng. 2010, 58, 1183–1192. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, G.; Lin, P.; Trucco, E. Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recognit. 2013, 46, 2117–2133. [Google Scholar] [CrossRef]
- Mendonça, A.M.; Campilho, A. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 2006, 25, 1200–1213. [Google Scholar] [CrossRef] [PubMed]
- Espona, L.; Carreira, M.J.; Penedo, M.G.G.; Ortega, M. Retinal vessel tree segmentation using a deformable contour model. In Proceedings of the 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2008; pp. 1–4. [Google Scholar]
- Vlachos, M.; Dermatas, E. Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 2010, 34, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Xiuqin, P.; Zhang, Q.; Zhang, H.; Li, S.; Pan, X. A Fundus Retinal Vessels Segmentation Scheme Based on the Improved Deep Learning U-Net Model. IEEE Access 2019, 7, 122634–122643. [Google Scholar] [CrossRef]
- Staal, J.; Abramoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-Based Vessel Segmentation in Color Images of the Retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Peng, Q.; Yuan, Y.; Cheung, Y.-M.; Lei, J. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 2011, 44, 2314–2324. [Google Scholar] [CrossRef]
- Tan, J.H.; Fujita, H.; Sivaprasad, S.; Bhandary, S.; Rao, A.K.; Chua, K.C.; Acharya, U.R. Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 2017, 420, 66–76. [Google Scholar] [CrossRef]
- Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S. An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation. IEEE Trans. Biomed. Eng. 2012, 59, 2538–2548. [Google Scholar] [CrossRef]
- Orlando, J.I.; Prokofyeva, E.; Blaschko, M.B. A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images. IEEE Trans. Biomed. Eng. 2017, 64, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Pdf ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Lecture Notes in Computer Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Fu, H.; Xu, Y.; Wong, D.; Liu, J. Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 698–701. [Google Scholar] [CrossRef]
- Marin, D.; Aquino, A.; Gegundez Arias, M.; Bravo, J.M. A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features. IEEE Trans. Med. Imaging 2010, 30, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Mo, J.; Zhang, L. Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 2181–2193. [Google Scholar] [CrossRef]
- Jiang, Y.; Tan, N.; Peng, T.; Zhang, H. Retinal Vessels Segmentation Based on Dilated Multi-Scale Convolutional Neural Network. IEEE Access 2019, 7, 76342–76352. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 1–9. [Google Scholar]
- Badrinarayanan, V.; Badrinarayanan, V.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Koshy, R.; Mahmood, A. Optimizing Deep CNN Architectures for Face Liveness Detection. Entropy 2019, 21, 423. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167v3. [Google Scholar]
- Soomro, T.A.; Afifi, A.J.; Zheng, L.; Soomro, S.; Gao, J.; Hellwich, O.; Paul, M. Deep Learning Models for Retinal Blood Vessels Segmentation: A Review. IEEE Access 2019, 7, 71696–71717. [Google Scholar] [CrossRef]
- Adhikari, S.P.; Yang, H.; Kim, H. Learning Semantic Graphics Using Convolutional Encoder–Decoder Network for Autonomous Weeding in Paddy. Front. Plant Sci. 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Garcia, E. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Wang, E.; Jiang, Y.; Li, Y.; Yang, J.; Ren, M.; Zhang, Q. MFCSNet: Multi-Scale Deep Features Fusion and Cost-Sensitive Loss Function Based Segmentation Network for Remote Sensing Images. Appl. Sci. 2019, 9, 4043. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Mojon, D. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Zhang, Y.; Zhou, L.; Zhang, B.; Luo, J.; Wu, H. Micro-Vessel Image Segmentation Based on the AD-UNet Model. IEEE Access 2019, 7, 143402–143411. [Google Scholar] [CrossRef]
- Cahall, D.E.; Rasool, G.; Bouaynaya, N.C.; Fathallah-Shaykh, H.M. Inception Modules Enhance Brain Tumor Segmentation. Front. Comput. Neurosci. 2019, 13, 44. [Google Scholar] [CrossRef] [Green Version]
- Khawaja, A.; Khan, T.M.; Naveed, K.; Naqvi, S.S.; Rehman, N.U.; Nawaz, S.J. An Improved Retinal Vessel Segmentation Framework Using Frangi Filter Coupled With the Probabilistic Patch Based Denoiser. IEEE Access 2019, 7, 164344–164361. [Google Scholar] [CrossRef]
- Azzopardi, G.; Strisciuglio, N.; Vento, M.; Petkov, N. Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 2015, 19, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhao, Y.; Liao, M.; Zou, B. Automatic segmentation for retinal vessel based on multi-scale 2D Gabor wavelet. Acta Autom. Sin. 2015, 41, 970–980. [Google Scholar]
- Roychowdhury, S.; Koozekanani, D.D.; Parhi, K.K.; Roychowdhury, S. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Sub-Image Classification. IEEE J. Biomed. Health Inf. 2014, 19, 1. [Google Scholar] [CrossRef]
- Liskowski, P.; Krawiec, K. Segmenting Retinal Blood Vessels With_newline Deep Neural Networks. IEEE Trans. Med. Imaging 2016, 35, 2369–2380. [Google Scholar] [CrossRef]
- Li, Q.; Feng, B.; Xie, L.; Liang, P.; Zhang, H.; Wang, T. A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images. IEEE Trans. Med. Imaging 2015, 35, 109–118. [Google Scholar] [CrossRef]
- Maninis, K.-K.; Pont-Tuset, J.; Arbelaez, P.; Van Gool, L. Deep Retinal Image Understanding. In Proceedings of the Computer Vision; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; Volume 9901, pp. 140–148. [Google Scholar]
- Chen, Y. A labeling-free approach to supervising deep neural networks for retinal blood vessel segmentation. arXiv 2017, arXiv:1704.07502. [Google Scholar]
- Hu, K.; Zhang, Z.; Niu, X.; Zhang, Y.; Cao, C.; Xiao, F.; Gao, X. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 2018, 309, 179–191. [Google Scholar] [CrossRef]
- Na, T.; Xie, J.; Zhao, Y.; Zhao, Y.; Liu, Y.; Wang, Y.; Liu, J. Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation. Med. Phys. 2018, 45, 3132–3146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre-Ramos, H.; Avina-Cervantes, J.G.; Cruz-Aceves, I.; Ruiz-Pinales, J.; Ledesma, S. Blood vessel segmentation in retinal fundus images using Gabor filters, fractional derivatives, and Expectation Maximization. Appl. Math. Comput. 2018, 339, 568–587. [Google Scholar] [CrossRef]
- Soomro, T.A.; Khan, M.; Gao, J.; Khan, T.M.; Paul, M. Contrast normalization steps for increased sensitivity of a retinal image segmentation method. Signal Image Video Process. 2017, 11, 1509–1517. [Google Scholar] [CrossRef]
- Mapayi, T.; Viriri, S.; Tapamo, J.-R. Adaptive Thresholding Technique for Retinal Vessel Segmentation Based on GLCM-Energy Information. Comput. Math. Methods Med. 2015, 2015, 597475. [Google Scholar] [CrossRef]
- Soares, J.; Leandro, J.J.G.; Cesar, R., Jr.; Jelinek, H.; Cree, M.J. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 2006, 25, 1214–1222. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Tu, Z. Holistically-Nested Edge Detection. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 1395–1403. [Google Scholar]
- Xia, H.; Jiang, F.; Deng, S.; Xin, J.; Doss, R. Mapping Functions Driven Robust Retinal Vessel Segmentation via Training Patches. IEEE Access 2018, 6, 61973–61982. [Google Scholar] [CrossRef]
Model | DRIVE | STARE | ||||||
---|---|---|---|---|---|---|---|---|
Sen | Spe | Acc | AUC | Sen | Spe | Acc | AUC | |
U-Net | 0.7758 | 0.9755 | 0.9500 | 0.9742 | 0.7838 | 0.9780 | 0.9535 | 0.9673 |
Proposed model | 0.7762 | 0.9835 | 0.9694 | 0.9790 | 0.7721 | 0.9885 | 0.9537 | 0.9680 |
Type | Method | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
Human observer | 0.7760 | 0.9724 | 0.9472 | |
Unsupervised methods | Khawaja [1] | 0.8043 | 0.9730 | 0.9553 |
Mendonca [12] | 0.7344 | 0.9764 | 0.9452 | |
Espona [13] | 0.7436 | 0.9615 | 0.9352 | |
Vlachos [14] | 0.7468 | 0.9551 | 0.9285 | |
Miri [10] | – | – | 0.9458 | |
Wang [11] | – | – | 0.9461 | |
Azzopardi [40] | 0.7655 | 0.9704 | 0.9442 | |
Wang [41] | 0.7527 | – | 0.9457 | |
Khawaja [39] | 0.7907 | 0.9790 | 0.9603 | |
Roychowdhury [42] | 0.7250 | 0.9830 | 0.9520 | |
Supervised Methods | Liskowsk [43] | 0.7763 | 0.9768 | 0.9495 |
You [17] | 0.7410 | 0.9751 | 0.9434 | |
Fraz [19] | 0.7406 | 0.9807 | 0.9480 | |
Fu [24] | 0.7294 | – | 0.9470 | |
Li [44] | 0.7569 | 0.9816 | 0.9527 | |
Maninis [45] | 0.8261 | 0.9115 | 0.9541 | |
Chen [46] | 0.7426 | 0.9735 | 0.9453 | |
Orlando [20] | 0.7079 | 0.9802 | – | |
Dasgupta [4] | 0.7691 | 0.9801 | 0.9533 | |
Hu [47] | 0.7772 | 0.9793 | 0.9533 | |
Na [48] | 0.7680 | 0.9700 | 0.9540 | |
Proposed method | 0.7762 | 0.9835 | 0.9694 |
Type | Method | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
Human observer | 0.8952 | 0.9384 | 0.9349 | |
Unsupervised methods | Khawaja [1] | 0.8011 | 0.9694 | 0.9545 |
Mendonca [12] | 0.6996 | 0.9730 | 0.9440 | |
Wang [11] | – | – | 0.9521 | |
Aguiree [49] | 0.7116 | 0.9454 | 0.9231 | |
Soomro [50] | 0.7130 | 0.9680 | 0.9440 | |
Azzopardi [40] | 0.7716 | 0.9701 | 0.9563 | |
Wang [41] | 0.7686 | – | 0.9451 | |
Khawaja [39] | 0.7860 | 0.9725 | 0.9583 | |
Roychowdhury [42] | 0.7720 | 0.9730 | 0.9510 | |
Mapayi [51] | 0.7626 | 0.9657 | 0.9510 | |
Supervised methods | Staal [16] | 0.6970 | 0.9810 | 0.9520 |
You [17] | 0.7260 | 0.9756 | 0.9497 | |
Fraz [19] | 0.7548 | 0.9763 | 0.9534 | |
Fu [24] | 0.7140 | – | 0.9545 | |
Soares [52] | 0.7200 | 0.9750 | 0.9480 | |
Chen [46] | 0.7295 | 0.9696 | 0.9449 | |
Xie [53] | 0.9955 | 0.5555 | 0.9378 | |
Orlando [20] | 0.7680 | 0.9738 | – | |
Xia [54] | 0.7670 | 0.9770 | 0.9530 | |
Hu [47] | 0.7543 | 0.9814 | 0.9632 | |
Proposed method | 0.7721 | 0.9885 | 0.9537 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Liu, G.; Ren, M.; Xu, B.; Wang, J. A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation. Entropy 2020, 22, 811. https://doi.org/10.3390/e22080811
Yang D, Liu G, Ren M, Xu B, Wang J. A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation. Entropy. 2020; 22(8):811. https://doi.org/10.3390/e22080811
Chicago/Turabian StyleYang, Dan, Guoru Liu, Mengcheng Ren, Bin Xu, and Jiao Wang. 2020. "A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation" Entropy 22, no. 8: 811. https://doi.org/10.3390/e22080811
APA StyleYang, D., Liu, G., Ren, M., Xu, B., & Wang, J. (2020). A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation. Entropy, 22(8), 811. https://doi.org/10.3390/e22080811