Experimental Data of a Hexagonal Floating Structure under Waves
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. Floating Object
2.2. Instrumentation
2.3. Wave Conditions
3. Additional Analysis
3.1. Mass Properties of the Model
3.2. Mooring Natural Frequency
3.3. Waves Amplitudes and Heights
4. Dataset Description
D[draft ID]_ M1 or M2_ 00deg or 90deg_ Reg [wave ID] |
D[draft ID]_ M1 or M2_ WN [wave ID] |
D[draft ID]_ M1_ Irr [wave ID] |
ET_ 00deg_ Reg or 90deg_ Reg or WN or Irr [wave ID] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
a | amplitude waves (mm) |
BEQ | Buoyant Energy Quarters |
amplitude waves (mm) requested from the wave makers | |
C | cases |
CG | centre of gravity |
DoF | degree of freedom |
empty tank | |
h | draft of the floating structure (mm) |
H | total height of the prism (mm) |
wave height irregular waves (mm) | |
wave height irregular waves (mm) requested from the wave makers | |
MI | moment of inertia |
MoCAP | motion capturing system |
RAO | response amplitude operator |
s | side length of the hexagon |
VLFS | Very large floating structure |
WEC | wave energy converter |
WG | wave gauge |
WL | water level |
References
- Klar, R.; Tonnel, M.; Mayer, R.; Marx, J.; Aufleger, M. BEQS: Marine Pumped-Storage concepts for floating city extensions. In Proceedings of the 2019 Offshore Energy and Storage Summit (OSES), Brest, France, 10–12 July 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Klar, R.; Steidl, B.; Sant, T.; Aufleger, M.; Farrugia, R.N. Buoyant Energy—Balancing wind power and other renewables in Europe’s oceans. J. Energy Storage 2017, 14, 246–255. [Google Scholar] [CrossRef]
- Klar, R.; Steidl, B.; Aufleger, M. A floating energy storage system based on fabric. Ocean Eng. 2018, 165, 328–335. [Google Scholar] [CrossRef]
- Gabl, R.; Klar, R.; Davey, T.; Ingram, D.M. Dataset-Experimental Data of a Hexagonal Floating Structure under Waves; DataShare Edinburgh [Dataset]; University of Edinburgh, Institute for Energy Systems: Edinburgh, UK, 2021. [Google Scholar]
- Kim, K.-T.; Lee, P.-S.; Park, K.C. A direct coupling method for 3D hydroelastic analysis of floating structures. Int. J. Numer. Methods Eng. 2013, 96, 842–866. [Google Scholar] [CrossRef]
- Wei, W.; Fu, S.; Moan, T.; Lu, Z.; Deng, S. A discrete-modules-based frequency domain hydroelasticity method for floating structures in inhomogeneous sea conditions. J. Fluids Struct. 2017, 74, 321–339. [Google Scholar] [CrossRef]
- Yoon, J.S.; Cho, S.P.; Jiwinangun, R.G.; Lee, P.S. Hydroelastic analysis of floating plates with multiple hinge connections in regular waves. Mar. Struct. 2014, 36, 65–87. [Google Scholar] [CrossRef]
- Lee, K.H.; Cho, S.; Kim, K.T.; Kim, J.G.; Lee, P.S. Hydroelastic analysis of floating structures with liquid tanks and comparison with experimental tests. Appl. Ocean Res. 2015, 52, 167–187. [Google Scholar] [CrossRef]
- Karperaki, A.E.; Belibassakis, K.A. Hydroelastic analysis of Very Large Floating Structures in variable bathymetry regions by multi-modal expansions and FEM. J. Fluids Struct. 2021, 102, 103236. [Google Scholar] [CrossRef]
- Wang, X.Z.; Gu, X.K. Risk-based ultimate strength design criteria for very large floating structure. Ocean Eng. 2021, 223, 108627. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Wang, C.M. Oscillating Wave Surge Converter-Type Attachment for Extracting Wave Energy While Reducing Hydroelastic Responses of Very Large Floating Structures. ASME J. Offshore Mech. Arct. Eng. 2020, 142, 042001. [Google Scholar] [CrossRef]
- Thomsen, J.B.; Ferri, F.; Kofoed, J.P. Experimental testing of moorings for large floating wave energy converters. I C. G. Soares (red.). In Progress in Renewable Energies Offshore, Proceedings of the RENEW 2016, 2nd International Conference on Renewable Energies Offshore, Lisbon, Portugal, 24–26 October 2016; CRC Press: Boca Raton, FL, USA, 2016; pp. 703–710. [Google Scholar]
- Thomsen, J.B.; Ferri, F.; Kofoed, J.P. Validation of a Tool for the Initial Dynamic Design of Mooring Systems for Large Floating Wave Energy Converters. J. Mar. Sci. Eng. 2017, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Ghigo, A.; Cottura, L.; Caradonna, R.; Bracco, G.; Mattiazzo, G. Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm. J. Mar. Sci. Eng. 2020, 8, 835. [Google Scholar] [CrossRef]
- Kosasih, K.M.A.; Suzuki, H.; Niizato, H.; Okubo, S. Demonstration Experiment and Numerical Simulation Analysis of Full-Scale Barge-Type Floating Offshore Wind Turbine. J. Mar. Sci. Eng. 2020, 8, 880. [Google Scholar] [CrossRef]
- Ruzzo, C.; Muggiasca, S.; Malara, G.; Taruffi, F.; Belloli, M.; Collu, M.; Li, L.; Brizzi, G.; Arena, F. Scaling strategies for multi-purpose floating structures physical modeling: State of art and new perspectives. Appl. Ocean. Res. 2021, 108, 102487. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H. A Novel Structural Configuration of Modular Floating Wind Farms With Self-Adaptive Property. ASME J. Offshore Mech. Arct. Eng. 2021, 143, 052002. [Google Scholar] [CrossRef]
- Cazzaniga, R.; Cicu, M.; Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M.; Ventura, C. Floating photovoltaic plants: Performance analysis and design solutions. Renew. Sustain. Energy Rev. 2018, 81, 1730–1741. [Google Scholar] [CrossRef]
- Ranjbaran, P.; Yousefi, H.; Gharehpetian, G.B.; Astaraei, F.R.A. review on floating photovoltaic (FPV) power generation units. Renew. Sustain. Energy Rev. 2019, 110, 332–347. [Google Scholar] [CrossRef]
- Subramanian, S.C.; Dye, M.; Redkar, S. Dynamic Analysis of Suction Stabilized Floating Platforms. J. Mar. Sci. Eng. 2020, 8, 587. [Google Scholar] [CrossRef]
- Jang, M.; Lee, Y.; Won, D.; Kang, Y.-J.; Kim, S. Static Behaviors of a Long-span Cable-Stayed Bridge with a Floating Tower under Dead Loads. J. Mar. Sci. Eng. 2020, 8, 816. [Google Scholar] [CrossRef]
- Viuff, T.; Xiang, X.; Leira, B.J.; Oiseth, O. Software-to-Software Comparison of End-Anchored Floating Bridge Global Analysis. J. Bridge Eng. 2020, 25, 04020022. [Google Scholar] [CrossRef]
- Allen, H.L.; Goupee, A.J.; Viselli, A.M.; Allen, C.K.; Dagher, H.J. Experimental investigation of multiple Oscillating Water Column Wave Energy Converters integrated in a floating breakwater: Energy extraction performance. Appl. Ocean. Res. 2020, 97, 102086. [Google Scholar]
- Zheng, X.; Zheng, H.; Lei, Y.; Li, Y.; Li, W. An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions. Energies 2020, 13, 604. [Google Scholar] [CrossRef] [Green Version]
- Yeh, N.; Yeh, P.; Chang, Y.H. Artificial floating islands for environmental improvement. Renew. Sustain. Energy Rev. 2015, 47, 616–622. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Wan, D. Numerical techniques for coupling hydrodynamic problems in ship and ocean engineering. J. Hydrodyn. 2020, 32, 212–233. [Google Scholar] [CrossRef]
- Kramer, M.B.; Andersen, J.; Thomas, S.; Bendixen, F.B.; Bingham, H.; Read, R.; Holk, N.; Ransley, E.; Brown, S.; Yu, Y.-H.; et al. Highly Accurate Experimental Heave Decay Tests with a Floating Sphere: A Public Benchmark Dataset for Model Validation of Fluid–Structure Interaction. Energies 2021, 14, 269. [Google Scholar] [CrossRef]
- Jiang, C.Q.; el Moctar, O.; Paredes, G.M.; Schellin, T.E. Validation of a dynamic mooring model coupled with a RANS solver. Mar. Struct. 2020, 72, 102783. [Google Scholar] [CrossRef]
- Gabl, R.; Davey, T.; Nixon, E.; Steynor, J.; Ingram, D.M. Comparison of a Floating Cylinder with Solid and Water Ballast. Water 2019, 11, 2487. [Google Scholar] [CrossRef] [Green Version]
- Gabl, R.; Davey, T.; Ingram, D.M. Roll Motion of a Water Filled Floating Cylinder — Additional Experimental Verification. Water 2020, 12, 2219. [Google Scholar] [CrossRef]
- Ingram, D.; Wallace, R.; Robinson, A.; Bryden, I. The Design and Commissioning of the First, Circular, Combined Current and Wave Test Basin. In Proceedings of the Oceans 2014 MTS/IEEE, Taipei, Taiwan, 7–10 April 2014. [Google Scholar]
- Draycott, S.; Sellar, B.; Davey, T.; Noble, D.R.; Venugopal, V.; Ingram, D. Capture and Simulation of the Ocean Environment for Offshore Renewable Energy. Renew. Sust. Energ. Rev. 2019, 104, 15–29. [Google Scholar] [CrossRef]
- Gabl, R.; Davey, T.; Cao, Y.; Li, Q.; Li, B.; Walker, K.L.; Giorgio-Serchi, F.; Aracri, S.; Kiprakis, A.; Stokes, A.A.; et al. Hydrodynamic loads on a restrained ROV under waves and current. Ocean Eng. 2021, 234, 109279. [Google Scholar] [CrossRef]
- Gaurier, B.; Ordonez-Sanchez, S.; Facq, J.-V.; Germain, G.; Johnstone, C.; Martinez, R.; Salvatore, F.; Santic, I.; Davey, T.; Old, C.; et al. MaRINET2 Tidal Energy Round Robin Tests—Performance Comparison of a Horizontal Axis Turbine Subjected to Combined Wave and Current Conditions. J. Mar. Sci. Eng. 2020, 8, 463. [Google Scholar] [CrossRef]
- Davey, T.; Sarmiento, J.; Ohana, J.; Thiebaut, F.; Haquin, S.; Weber, M.; Gueydon, S.; Judge, F.; Lyden, E.; O’Shea, M.; et al. Round Robin Testing: Exploring Experimental Uncertainties through a Multifacility Comparison of a Hinged Raft Wave Energy Converter. J. Mar. Sci. Eng. 2021, 9, 946. [Google Scholar] [CrossRef]
- Noble, D.R.; O’Shea, M.; Judge, F.; Robles, E.; Martinez, R.; Khalid, F.; Thies, P.R.; Johanning, L.; Corlay, Y.; Gabl, R.; et al. Standardising Marine Renewable Energy Testing: Gap Analysis and Recommendations for Development of Standards. J. Mar. Sci. Eng. 2021, 9, 971. [Google Scholar] [CrossRef]
- Gabl, R.; Davey, T.; Nixon, E.; Steynor, J.; Ingram, D.M. Experimental Data of a Floating Cylinder in a Wave Tank: Comparison Solid and Water Ballast. Data 2019, 4, 146. [Google Scholar] [CrossRef] [Green Version]
- Gabl, R.; Steynor, J.; Forehand, D.I.M.; Davey, T.; Bruce, T.; Ingram, D.M. Capturing the Motion of the Free Surface of a Fluid Stored within a Floating Structure. Water 2019, 11, 50. [Google Scholar] [CrossRef] [Green Version]
- MARINET. Work Package 2: Standards and Best Practice—D2.1 Wave Instrumentation Database. Revision: 05. 2012. Available online: Http://www.marinet2.eu/wp-content/uploads/2017/04/D2.01-Wave-Instrumentation-Database.pdf (accessed on 28 September 2021).
- Gabl, R.; Draycott, S.; Pillai, A.; Davey, T. Experimental data of bottom pressure and free surface elevation including waves and current interaction. Data 2021, in press. [Google Scholar]
- Huang, W.; Li, B.; Chen, X.; Araujo, R. Numerical and experimental studies on dynamic gangway response between monohull flotel and FPSO in non-parallel side-by-side configuration. Ocean Eng. 2018, 149, 341–357. [Google Scholar] [CrossRef]
- Zhao, W.; McPhail, F.; Efthymiou, M. Effect of partially filled spherical cargo tanks on the roll response of a bargelike vessel. J. Offshore Mech. Arctic Engi. 2016, 138, 031601. [Google Scholar] [CrossRef]
- Bielicki, S.; Bednarek, A.; Kraskowski, M. Evaluation of Response Amplitude Operator of Ship Roll Motions Based on the Experiments in White Noise Waves. In Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Volume 7B: Ocean Engineering, Trondheim, Norway, 25–30 June 2017. V07BT06A022. [Google Scholar]
- Li, B. Multi-body hydrodynamic resonance and shielding effect of vessels parallel and nonparallel side-by-side. Ocean Eng. 2020, 218, 108188. [Google Scholar] [CrossRef]
- Liang, M.; Xu, S.; Wang, X.; Ding, A. Experimental evaluation of a mooring system simplification methodology for reducing mooring lines in a VLFS model testing at a moderate water depth. Ocean Eng. 2021, 219, 107912. [Google Scholar] [CrossRef]
- Schedlinski, C.; Link, M. A survey of current inertia parameter identification methods. Mech. Syst. Signal Process. 2001, 15, 189–211. [Google Scholar] [CrossRef]
- Gabl, R.; Davey, T.; Nixon, E.; Ingram, D.M. Accuracy analysis of the Measurement of Centre of Gravity and Moment of Inertia with a Swing. Appl. Sci. 2021, 11, 5345. [Google Scholar] [CrossRef]
- Gabl, R.; Davey, T.; Cao, Y.; Li, Q.; Li, B.; Walker, K.L.; Giorgio-Serchi, F.; Aracri, S.; Kiprakis, A.; Stokes, A.A.; et al. Experimental Force Data of a Restrained ROV under Waves and Current. Data 2020, 5, 57. [Google Scholar] [CrossRef]
Units | Weight [kg] | Draft h [mm] | [%] | [mm] | [mm] | = [kg m] | [kg m] |
---|---|---|---|---|---|---|---|
Conf | 47.70 | 234 | 81.0% | 120 | −114 | 1.789 | 1.620 |
Conf | 36.13 | 177 | 61.4% | 113 | −64 | 1.111 | 1.322 |
Conf | 24.31 | 119 | 41.3% | 121 | 1 | 0.780 | 0.944 |
WG1 | WG2 | WG3 | WG4 | WG5 | WG6 | WG7 | |
---|---|---|---|---|---|---|---|
x [m] | −2.68 | −2.59 | −2.32 | −1.86 | −1.68 | 0.00 | 3.36 |
Model | =−6 × 0.28 [m] | model | =12 × 0.28 [m] | ||||
Golomb ruler | 0 | 1 | 4 | 9 | 11 | ||
y [m] | 0 | 0 | 0 | 0 | 0 | −1.65 | 0 |
Mooring Conf.→ | M1 | M1 | M2 | M2 | M1 | M1 | M2 | M2 | M1 | M1 | M2 | M2 | - | - | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wave Angle []→ | 0 | 90 | 0 | 90 | 0 | 90 | 0 | 90 | 0 | 90 | 0 | 90 | 0 | 90 | |
Wave | [Hz] | Conf D1 | Conf D2 | Conf D3 | Empty Tank | ||||||||||
Reg1 | 0.3 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg2 | 0.4 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg3 | 0.5 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg4 | 0.6 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg5 | 0.65 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg6 | 0.7 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg7 | 0.725 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg8 | 0.75 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg9 | 0.775 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg10 | 0.8 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg11 | 0.825 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg12 | 0.85 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg13 | 0.875 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg14 | 0.9 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg15 | 0.925 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg16 | 0.95 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg17 | 0.975 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg18 | 1 | x | x | x | x | x | x | x | x | x | x | x | x | ||
Reg19 | 0.8125 | x | x | x | x | x | x | x | x | x | x | ||||
Reg20 | 0.8375 | x | x | x | x | x | x | x | x | x | x | ||||
Reg21 | 0.85 | x | x | x | x | x | x | x | x | x | x | ||||
Reg22 | 0.8625 | x | x | x | x | x | x | x | x | x | x | ||||
Reg23 | 0.8875 | x | x | x | x | x | x | x | x | x | x | ||||
Reg24 | 0.7625 | x | x | x | x | x | x | x | x | x | x | ||||
Reg25 | 0.7875 | x | x | x | x | x | x | x | x | x | x | ||||
Reg26 | 0.45 | x | x | x | x | x | x | x | x | x | x | ||||
Reg27 | 0.425 | x | x | x | x | x | x | x | x | x | x | ||||
Reg28 | 0.85 | x | x | x | x | x | x | x | x | x | x | ||||
Reg29 | 0.675 | x | x | x | x | x | x | ||||||||
Reg30 | 0.7125 | x | x | x | x | x | x | ||||||||
Reg31 | 0.7 | x | x | x | x | x | x | ||||||||
Reg32 | 0.625 | x | x | x | x | ||||||||||
Reg33 | 0.6625 | x | x | x | x |
Frequency | Wave | Capture | Run | Repeat | |||
---|---|---|---|---|---|---|---|
Wave | min | max | Direction | Time | |||
[m] | [Hz] | [Hz] | [] | [sec] | [sec] | [sec] | |
WN1 | 0.01 | 0.2 | 0.8 | 90 | 170 | 160 | 128 |
WN2 | 0.01 | 0.2 | 0.9 | 90 | 170 | 160 | 128 |
WN3 | 0.005 | 0.2 | 1 | 90 | 170 | 160 | 128 |
WN4 | 0.005 | 0.5 | 1.1 | 90 | 170 | 160 | 128 |
WN5 | 0.01 | 0.5 | 1.1 | 90 | 170 | 160 | 128 |
WN6 | 0.015 | 0.5 | 1.1 | 90 | 170 | 160 | 128 |
WN7 | 0.0025 | 0.5 | 1.1 | 90 | 170 | 160 | 128 |
WN8 | 0.005 | 0.2 | 1.1 | 90 | 170 | 160 | 128 |
WN9 | 0.005 | 0.2 | 1.1 | 0 | 170 | 160 | 128 |
WN10 | 0.005 | 0.2 | 1.1 | 90 | 550 | 540 | 512 |
WN11 | 0.005 | 0.2 | 1.1 | 0 | 550 | 540 | 512 |
[m] | Wave Direction [] | Conf D1 | Conf D2 | Conf D3 | Empty Tank |
---|---|---|---|---|---|
0.01 | 90 | Irr1 | Irr1 | ||
0.02 | 90 | Irr2 | Irr2 | ||
0.03 | 90 | Irr3 and Irr4 | Irr1 | Irr1 | Irr3 |
0.03 | 0 | Irr5 | Irr2 | Irr2 | Irr5 |
0.04 | 90 | Irr3 | Irr3 | Irr4 | |
0.06 | 90 | Irr4 | Irr4 | Irr6 |
Measured | Difference (Value-Theo) | Difference/Theo | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Theo | P1 | P2 | (P1 + P2)/2 | P1 | P2 | (P1 + P2)/2 | P1 | P2 | (P1 + P2)/2 | |
[mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [%] | [%] | [%] | |
Conf | 119.8 | 122.9 | 110.3 | 116.6 | 3.0 | −9.6 | −3.3 | 2.54% | −7.98% | −2.72% |
Conf | 113.0 | 110.0 | 111.3 | 110.7 | −3.0 | −1.7 | −2.3 | −2.64% | −1.48% | −2.06% |
Conf | 120.8 | 123.6 | 116.4 | 120.0 | 2.8 | −4.4 | −0.8 | 2.33% | −3.66% | −0.67% |
Measured | Difference (Value-Theo) | Difference/Theo | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Theo | P1 | P2 | (P1 + P2)/2 | P1 | P2 | (P1 + P2)/2 | P1 | P2 | (P1 + P2)/2 | ||
Conf | 1.789 | 1.482 | 1.079 | 1.280 | −0.307 | −0.402 | −0.095 | −17.19% | −22.49% | −5.31% | 57.824 |
Conf | 1.111 | 1.047 | 0.773 | 0.910 | −0.065 | −0.274 | −0.209 | −5.82% | −24.62% | −18.80% | 60.523 |
Conf | 0.780 | 0.790 | 0.245 | 0.518 | 0.010 | −0.545 | −0.555 | 1.32% | −69.88% | −71.20% | 63.762 |
Name | WG1 | WG2 | WG3 | WG4 | WG5 | WG6 | WG7 | Trigger |
---|---|---|---|---|---|---|---|---|
Unit | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [-] |
Column | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Name | X | Y | Z | RZ | RY | RX | Residual | |
Unit | [mm] | [mm] | [mm] | [deg] | [deg] | [deg] | [mm] | |
Column | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Conf | Conf | Conf | ||||
---|---|---|---|---|---|---|
Detail | Overview | Detail | Overview | Detail | Overview | |
Irr1 | x | x | x | x | ||
Irr2 | x | x | x | x | x | |
Irr3 | x | x | x | x | ||
Irr4 | x | x | x | x | x | x |
Irr5 | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabl, R.; Klar, R.; Davey, T.; Ingram, D.M. Experimental Data of a Hexagonal Floating Structure under Waves. Data 2021, 6, 105. https://doi.org/10.3390/data6100105
Gabl R, Klar R, Davey T, Ingram DM. Experimental Data of a Hexagonal Floating Structure under Waves. Data. 2021; 6(10):105. https://doi.org/10.3390/data6100105
Chicago/Turabian StyleGabl, Roman, Robert Klar, Thomas Davey, and David M. Ingram. 2021. "Experimental Data of a Hexagonal Floating Structure under Waves" Data 6, no. 10: 105. https://doi.org/10.3390/data6100105
APA StyleGabl, R., Klar, R., Davey, T., & Ingram, D. M. (2021). Experimental Data of a Hexagonal Floating Structure under Waves. Data, 6(10), 105. https://doi.org/10.3390/data6100105