Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Open-Source Portable Photodetection Platform (OS3P)
2.1.1. 3D Printing
2.1.2. Design of the Sensor System
2.2. Software Controlling the OS3P
2.3. Light Source Characterization
2.4. Testing of the TSL230R Sensor
2.5. Measement of Color Solutions
2.6. Preparation of Enzyme Concentrate
2.7. Enzyme Assay—Optimizing the Effective Substrate Concentration
2.8. Enzyme Assay Conducted by OS3P
2.9. AChE Inhibitor Assay
- (a)
- The optimal time for all molecules of the inhibitor to bind to AChE.
- (b)
- Determination of carbofuran by the Ellman assay.
2.10. Acquiring of the Raw Data from OS3P
2.11. Statistical Evaluation of Acquired Data
- (a)
- Standard spectrophotometry
- (b)
- The OS3P photometry
3. Results and Discussion
- Hardware and software
- Determination of Colored Solutions
- AChE substrate concentration optimization
- Optimization of the Binding Time of the Inhibitor to AChE
- Carbofuran assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pundir, C.S.; Malik, A.; Preety. Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019, 140, 111348. [Google Scholar] [CrossRef] [PubMed]
- Jain, U.; Saxena, K.; Hooda, V.; Balayan, S.; Singh, A.P.; Tikadar, M.; Chauhan, N. Emerging vistas on pesticides detection based on electrochemical biosensors—An update. Food Chem. 2022, 371, 131126. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.M.; Xu, B.J.; Dong, C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trac. Trend. Anal. Chem. 2021, 142, 116320. [Google Scholar] [CrossRef]
- Pope, C.N.; Brimijoin, S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol. 2018, 153, 205–216. [Google Scholar] [CrossRef]
- Choi, R.J.; Roy, A.; Jung, H.J.; Ali, M.Y.; Min, B.-S.; Park, C.H.; Yokozawa, T.; Fan, T.-P.; Choi, J.S.; Jung, H.A. BACE1 molecular docking and anti-Alzheimer’s disease activities of ginsenosides. J. Ethnopharmacol. 2016, 190, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Teymourian, H.; Sandhu, S.S.; Tostado, N.; Mishra, R.K.; Moore, L.C.; Harvey, S.P.; Wang, J. OPAA/fluoride biosensor chip towards field detection of G-type nerve agents. Sens. Actuators B Chem. 2020, 320, 128344. [Google Scholar] [CrossRef]
- Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31. [Google Scholar] [CrossRef]
- Cao, J.; Wang, M.; Yu, H.; She, Y.; Cao, Z.; Ye, J.; Abd El-Aty, A.M.; Hacimuftuoglu, A.; Wang, J.; Lao, S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. J. Agric. Food Chem. 2020, 68, 7298–7315. [Google Scholar] [CrossRef]
- Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. 2011, 155, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, B.; Alam, S.; Rajib, T.K.; Islam, S.S.; Araf, Y.; Ullah, M.A. Identification of the most potent acetylcholinesterase inhibitors from plants for possible treatment of Alzheimer’s disease: A computational approach. Egypt. J. Med. Hum. Genet. 2021, 22, 10. [Google Scholar] [CrossRef]
- Kitowski, I.; Łopucki, R.; Stachniuk, A.; Fornal, E. A pesticide banned in the European Union over a decade ago is still present in raptors in Poland. Environ. Conserv. 2020, 47, 310–314. [Google Scholar] [CrossRef]
- Ruiz-Suarez, N.; Boada, L.D.; Henriquez-Hernandez, L.A.; Gonzalez-Moreo, F.; Suarez-Perez, A.; Camacho, M.; Zumbado, M.; Almeida-Gonzalez, M.; Del Mar Travieso-Aja, M.; Luzardo, O.P. Continued implication of the banned pesticides carbofuran and aldicarb in the poisoning of domestic and wild animals of the Canary Islands (Spain). Sci. Total Environ. 2015, 505, 1093–1099. [Google Scholar] [CrossRef]
- de Siqueira, A.; Salvagni, F.A.; Yoshida, A.S.; Goncalves-Junior, V.; Calefi, A.S.; Fukushima, A.R.; Spinosa Hde, S.; Maiorka, P.C. Poisoning of cats and dogs by the carbamate pesticides aldicarb and carbofuran. Res. Vet. Sci. 2015, 102, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Zeljezic, D.; Vrdoljak, A.L.; Radic, B.; Fuchs, N.; Berend, S.; Orescanin, V.; Kopjar, N. Comparative evaluation of acetylcholinesterase status and genome damage in blood cells of industrial workers exposed to carbofuran. Food Chem. Toxicol. 2007, 45, 2488–2498. [Google Scholar] [CrossRef] [PubMed]
- Di Nonno, S.; Ulber, R. Portuino—A Novel Portable Low-Cost Arduino-Based Photo- and Fluorimeter. Sensors 2022, 22, 7916. [Google Scholar] [CrossRef]
- Anzalone, G.C.; Glover, A.G.; Pearce, J.M. Open-source colorimeter. Sensors 2013, 13, 5338–5346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, L.Q.; Chi, H.B.L.; Khanh, D.N.N.; Vy, N.T.T.; Hanh, P.X.; Vu, T.N.; Lam, H.T.; Phuong, N.T.K. Development of a low-cost colorimeter and its application for determination of environmental pollutants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119212. [Google Scholar] [CrossRef]
- Machado, M.C.; Vimbela, G.V.; Tripathi, A. Creation of a low cost, low light bioluminescence sensor for real time biological nitrate sensing in marine environments. Environ. Technol. 2022, 43, 4002–4009. [Google Scholar] [CrossRef]
- Kurata, K. Open-source colorimeter assembled from laser-cut plates and plug-in circuits. Hardwarex 2021, 9, e00161. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wu, Z.; Xu, F.; Li, X.; Yao, C.; Xu, M.; Sheng, L.; Yu, S.; Tang, Y. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip 2016, 16, 1927–1933. [Google Scholar] [CrossRef] [Green Version]
- Arafat Hossain, M.; Canning, J.; Ast, S.; Cook, K.; Rutledge, P.J.; Jamalipour, A. Combined “dual” absorption and fluorescence smartphone spectrometers. Opt. Lett. 2015, 40, 1737–1740. [Google Scholar] [CrossRef]
- Bergua, J.F.; Alvarez-Diduk, R.; Idili, A.; Parolo, C.; Maymo, M.; Hu, L.; Merkoci, A. Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Anal. Chem. 2022, 94, 1271–1285. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Shin, S.; Hwang, J.; Kim, Y.-J.; Choi, S. Open-Source Fluorescence Spectrometer for Noncontact Scientific Research and Education. J. Chem. Educ. 2021, 98, 3493–3501. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019, 126, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Caratelli, V.; Fegatelli, G.; Moscone, D.; Arduini, F. A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: A flower-like origami biosensor for precision agriculture. Biosens. Bioelectron. 2022, 205, 114119. [Google Scholar] [CrossRef]
- Bilal, S.; Sami, A.J.; Hayat, A.; Fayyaz Ur Rehman, M. Assessment of pesticide induced inhibition of Apis mellifera (honeybee) acetylcholinesterase by means of N-doped carbon dots/BSA nanocomposite modified electrochemical biosensor. Bioelectrochemistry 2022, 144, 107999. [Google Scholar] [CrossRef]
- Ding, J.; Li, B.; Chen, L.; Qin, W. A Three-Dimensional Origami Paper-Based Device for Potentiometric Biosensing. Angew. Chem. Int. Ed. Engl. 2016, 55, 13033–13037. [Google Scholar] [CrossRef]
- Mishra, R.K.; Hubble, L.J.; Martin, A.; Kumar, R.; Barfidokht, A.; Kim, J.; Musameh, M.M.; Kyratzis, I.L.; Wang, J. Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats. ACS Sens. 2017, 2, 553–561. [Google Scholar] [CrossRef]
- Thet Tun, W.S.; Saenchoopa, A.; Daduang, S.; Daduang, J.; Kulchat, S.; Patramanon, R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice. Rsc. Adv. 2023, 13, 9603–9614. [Google Scholar] [CrossRef]
- Tao, H.; Liu, F.; Ji, C.; Wu, Y.; Wang, X.; Shi, Q. A novel electrochemical sensing platform based on the esterase extracted from kidney bean for high-sensitivity determination of organophosphorus pesticides. Rsc. Adv. 2022, 12, 5265–5274. [Google Scholar] [CrossRef]
- Fuyal, M.; Giri, B. A Combined System of Paper Device and Portable Spectrometer for the Detection of Pesticide Residues. Food Analytical. Methods 2020, 13, 1492–1502. [Google Scholar] [CrossRef]
- Bueno, D.; Alonso, G.; Muñoz, R.; Marty, J.L. Low-cost and portable absorbance measuring system to carbamate and organophosphate pesticides. Sens. Actuators B Chem. 2014, 203, 81–88. [Google Scholar] [CrossRef]
- Gong, C.; Fan, Y.; Zhao, H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta 2022, 240, 123145. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Eyer, P.; Worek, F.; Kiderlen, D.; Sinko, G.; Stuglin, A.; Simeon-Rudolf, V.; Reiner, E. Molar absorption coefficients for the reduced Ellman reagent: Reassessment. Anal. Biochem. 2003, 312, 224–227. [Google Scholar] [CrossRef]
- Pohanka, M.; Hrabinova, M.; Kuca, K.; Simonato, J.P. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman’s method. Int. J. Mol. Sci. 2011, 12, 2631–2640. [Google Scholar] [CrossRef] [Green Version]
- Keresteš, O.; Pohanka, M. Enzymatic Biosensors for the Environmental Analysis of Pesticides. Chem. Listy 2022, 116, 358–364. [Google Scholar] [CrossRef]
- Pohanka, M.; Karasova, J.Z.; Kuca, K.; Pikula, J.; Holas, O.; Korabecny, J.; Cabal, J. Colorimetric dipstick for assay of organophosphate pesticides and nerve agents represented by paraoxon, sarin and VX. Talanta 2010, 81, 621–624. [Google Scholar] [CrossRef]
- No, H.Y.; Kim, Y.A.; Lee, Y.T.; Lee, H.S. Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Anal. Chim. Acta 2007, 594, 37–43. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, C.; Xie, J.; Li, Z.; Qu, L.; Cai, X.; Ouyang, H.; Song, Y.; Du, D.; Lin, Y.; et al. Ambient light sensor based colorimetric dipstick reader for rapid monitoring organophosphate pesticides on a smart phone. Anal. Chim. Acta 2019, 1092, 126–131. [Google Scholar] [CrossRef]
- Pitschmann, V.; Matějovský, L.; Lunerová, K.; Dymák, M.; Urban, M.; Králík, L. Detection Papers with Chromogenic Chemosensors for Direct Visual Detection and Distinction of Liquid Chemical Warfare Agents. Chemosensors 2019, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Pidany, F.; Kroustkova, J.; Al Mamun, A.; Suchankova, D.; Brazzolotto, X.; Nachon, F.; Chantegreil, F.; Dolezal, R.; Pulkrabkova, L.; Muckova, L.; et al. Highly selective butyrylcholinesterase inhibitors related to Amaryllidaceae alkaloids—Design, synthesis, and biological evaluation. Eur. J. Med. Chem. 2023, 252, 115301. [Google Scholar] [CrossRef] [PubMed]
- BCSengage. Arduino Starter Kit Base Replacement. Available online: https://www.thingiverse.com/thing:1286765 (accessed on 30 April 2023).
- TAOS TSL230R Datasheet. Available online: https://pdf1.alldatasheet.com/datasheet-pdf/view/153439/ETC1/TSL230R.html (accessed on 30 April 2023).
- Ks0032 Keyestudio RGB LED Module. Available online: https://wiki.keyestudio.com/Ks0032_keyestudio_RGB_LED_Module (accessed on 18 April 2023).
- Meyer, A. High Sensitivity Light Sensor TSL230R + Arduino. Available online: http://adam-meyer.com/arduino/TSL230R (accessed on 30 April 2023).
- Kerestes, O.; Pohanka, M. Open Source Portable Photodetection Platform (OS3P). Available online: https://doi.org/10.17605/OSF.IO/TJB3E (accessed on 30 April 2023).
- Carreres-Prieto, D.; García, J.T.; Cerdán-Cartagena, F.; Suardiaz-Muro, J. Performing Calibration of Transmittance by Single RGB-LED within the Visible Spectrum. Sensors 2020, 20, 3492. [Google Scholar] [CrossRef] [PubMed]
- Kostelnik, A.; Kopel, P.; Cegan, A.; Pohanka, M. Construction of an Acetylcholinesterase Sensor Based on Synthesized Paramagnetic Nanoparticles, a Simple Tool for Neurotoxic Compounds Assay. Sensors 2017, 17, 676. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.C.; Wei, B.; Yang, W.; He, C.W.; Su, H.X.; Wan, J.B.; Li, P.; Wang, Y.T. Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique. Food Chem. Toxicol. 2018, 119, 430–437. [Google Scholar] [CrossRef]
- Jeyapragasam, T.; Saraswathi, R. Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite. Sens. Actuators B Chem. 2014, 191, 681–687. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, Q.; Xiao, F.; Shi, G.; Jin, L. Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry 2010, 77, 139–144. [Google Scholar] [CrossRef]
- Matejovsky, L.; Pitschmann, V. New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors. Biosensors 2018, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Pohanka, M.; Zakova, J. A Smartphone Camera Colorimetric Assay of Acetylcholinesterase and Butyrylcholinesterase Activity. Sensors 2021, 21, 1796. [Google Scholar] [CrossRef]
- Laganovska, K.; Zolotarjovs, A.; Vazquez, M.; Mc Donnell, K.; Liepins, J.; Ben-Yoav, H.; Karitans, V.; Smits, K. Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements. Hardwarex 2020, 7, e00108. [Google Scholar] [CrossRef]
- Alvarez, J.L.; Mozo, J.D.; Duran, E. Analysis of Single Board Architectures Integrating Sensors Technologies. Sensors 2021, 21, 6303. [Google Scholar] [CrossRef] [PubMed]
- Innok, W.; Hiranrat, A.; Chana, N.; Rungrotmongkol, T.; Kongsune, P. In silico and in vitro anti-AChE activity investigations of constituents from Mytragyna speciosa for Alzheimer’s disease treatment. J. Comput. Aided Mol. Des. 2021, 35, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Kikura-Hanajiri, R.; Kawamura, M.; Maruyama, T.; Kitajima, M.; Takayama, H.; Goda, Y. Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicol. 2009, 27, 67–74. [Google Scholar] [CrossRef]
- Omar, F.; Tareq, A.M.; Alqahtani, A.M.; Dhama, K.; Sayeed, M.A.; Emran, T.B.; Simal-Gandara, J. Plant-Based Indole Alkaloids: A Comprehensive Overview from a Pharmacological Perspective. Molecules 2021, 26, 2297. [Google Scholar] [CrossRef]
Phenol Red—Limit of Detection [ng/mL] | |||
---|---|---|---|
Analyzer | Thermo Evolution 201 | Spectrovis Plus | OS3P |
Color appropriate for 435 nm | 10.7 | 53.4 | 73.1 |
Color appropriate for 555 nm | 25.2 | 91.2 | 81.3 |
Analyzer | Thermo Evolution 201 | Open-Source Portable Photodetection Platform | ||
---|---|---|---|---|
KM [mmol/L] | r2 | KM [mmol/L] | r2 | |
End-point assay | 0.116 | 0.994 | 0.110 | 0.996 |
Kinetic assay | 0.0982 | 0.974 |
Limits of Detection—Carbofuran (nmol/L) | ||
---|---|---|
Analyzer | Spectrovis Plus | OS3P |
Inverted slope values | 3.88 | 6.32 |
End-point Assay | 33.5 | 13.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keresteš, O.; Pohanka, M. Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity. Biosensors 2023, 13, 599. https://doi.org/10.3390/bios13060599
Keresteš O, Pohanka M. Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity. Biosensors. 2023; 13(6):599. https://doi.org/10.3390/bios13060599
Chicago/Turabian StyleKeresteš, Ondřej, and Miroslav Pohanka. 2023. "Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity" Biosensors 13, no. 6: 599. https://doi.org/10.3390/bios13060599
APA StyleKeresteš, O., & Pohanka, M. (2023). Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity. Biosensors, 13(6), 599. https://doi.org/10.3390/bios13060599