Evolutionary Origin of MUTYH Germline Pathogenic Variations in Modern Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Human MUTYH Variants
2.2. Phylogenetic Analysis
2.3. Archaeological Analysis
2.4. Statistical Analysis
3. Results
3.1. Phylogenetic Analysis of Human MUTYH Variants in Non-Human Vertebrates
3.1.1. PVs
3.1.2. BVs
3.2. Archaeological Analysis of MUTYH Variants in Ancient Humans
3.2.1. PVs
3.2.2. BVs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- David, S.S.; O’Shea, V.L.; Kundu, S. Base-Excision Repair of Oxidative DNA Damage. Nature 2007, 447, 941–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzei, F.; Viel, A.; Bignami, M. Role of MUTYH in Human Cancer. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2013, 743–744, 33–43. [Google Scholar] [CrossRef]
- Bedics, G.; Kotmayer, L.; Zajta, E.; Hegyi, L.L.; Brückner, E.Á.; Rajnai, H.; Reiniger, L.; Bödör, C.; Garami, M.; Scheich, B. Germline MUTYH Mutations and High-Grade Gliomas: Novel Evidence for a Potential Association. Genes Chromosomes Cancer 2022, 61, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Slupska, M.M.; Baikalov, C.; Luther, W.M.; Chiang, J.H.; Wei, Y.F.; Miller, J.H. Cloning and Sequencing a Human Homolog (HMYH) of the Escherichia Coli MutY Gene Whose Function Is Required for the Repair of Oxidative DNA Damage. J. Bacteriol. 1996, 178, 3885–3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banda, D.M.; Nuñez, N.N.; Burnside, M.A.; Bradshaw, K.M.; David, S.S. Repair of 8-OxoG:A Mismatches by the MUTYH Glycosylase: Mechanism, Metals and Medicine. Free Radic. Biol. Med. 2017, 107, 202–215. [Google Scholar] [CrossRef]
- Luncsford, P.J.; Manvilla, B.A.; Patterson, D.N.; Malik, S.S.; Jin, J.; Hwang, B.-J.; Gunther, R.; Kalvakolanu, S.; Lipinski, L.J.; Yuan, W.; et al. Coordination of MYH DNA Glycosylase and APE1 Endonuclease Activities via Physical Interactions. DNA Repair 2013, 12, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Raetz, A.G.; David, S.S. When You’re Strange: Unusual Features of the MUTYH Glycosylase and Implications in Cancer. DNA Repair 2019, 80, 16–25. [Google Scholar] [CrossRef]
- Morgan, C.C.; Shakya, K.; Webb, A.; Walsh, T.A.; Lynch, M.; Loscher, C.E.; Ruskin, H.J.; O’Connell, M.J. Colon Cancer Associated Genes Exhibit Signatures of Positive Selection at Functionally Significant Positions. BMC Evol. Biol. 2012, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Pope, M.A.; David, S.S. DNA Damage Recognition and Repair by the Murine MutY Homologue. DNA Repair 2005, 4, 91–102. [Google Scholar] [CrossRef]
- ClinVar Database. Available online: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/ (accessed on 19 May 2022).
- Aretz, S.; Tricarico, R.; Papi, L.; Spier, I.; Pin, E.; Horpaopan, S.; Cordisco, E.L.; Pedroni, M.; Stienen, D.; Gentile, A.; et al. MUTYH-Associated Polyposis (MAP): Evidence for the Origin of the Common European Mutations p.Tyr179Cys and p.Gly396Asp by Founder Events. Eur. J. Hum. Genet. 2014, 22, 923–929. [Google Scholar] [CrossRef] [Green Version]
- Orlando, L.; Allaby, R.; Skoglund, P.; der Sarkissian, C.; Stockhammer, P.W.; Ávila-Arcos, M.C.; Fu, Q.; Krause, J.; Willerslev, E.; Stone, A.C.; et al. Ancient DNA Analysis. Nat. Rev. Methods Prim. 2021, 1, 14. [Google Scholar] [CrossRef]
- Li, J.; Zhao, B.; Huang, T.; Qin, Z.; Wang, S.M. Human BRCA Pathogenic Variants Were Originated during Recent Human History. Life Sci. Alliance 2022, 5, e202101263. [Google Scholar] [CrossRef] [PubMed]
- Multiz Alignments of 100 Vertebrates. Available online: https://genome.ucsc.edu/cgi-bin/hgc?db=hg38&c=chr17&l=43106526&r=43106527&o=43106526&t=43106527&g=multiz100way&i=multiz100way (accessed on 20 May 2022).
- Murphy, W.J.; Eizirik, E.; O’Brien, S.J.; Madsen, O.; Scally, M.; Douady, C.J.; Teeling, E.; Ryder, O.A.; Stanhope, M.J.; de Jong, W.W.; et al. Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics. Science 2001, 294, 2348–2351. [Google Scholar] [CrossRef] [PubMed]
- Blanchette, M.; Kent, W.J.; Riemer, C.; Elnitski, L.; Smit, A.F.A.; Roskin, K.M.; Baertsch, R.; Rosenbloom, K.; Clawson, H.; Green, E.D.; et al. Aligning Multiple Genomic Sequences with the Threaded Blockset Aligner. Genome Res. 2004, 14, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Hubisz, M.J.; Pollard, K.S.; Siepel, A. PHAST and RPHAST: Phylogenetic Analysis with Space/Time Models. Brief. Bioinform. 2011, 12, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, J.; Fiddes, I.T.; Diekhans, M.; Paten, B. Whole-Genome Alignment and Comparative Annotation. Annu. Rev. Anim. Biosci. 2019, 7, 41–64. [Google Scholar] [CrossRef]
- Ramani, R.; Krumholz, K.; Huang, Y.-F.; Siepel, A. PhastWeb: A Web Interface for Evolutionary Conservation Scoring of Multiple Sequence Alignments Using PhastCons and PhyloP. Bioinformatics 2019, 35, 2320–2322. [Google Scholar] [CrossRef]
- GetBase. Available online: https://github.com/Skylette14/GetBase (accessed on 2 June 2022).
- Allen Ancient DNA Resource. Available online: https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data (accessed on 10 October 2021).
- European Nucleotide Archive. Available online: https://www.ebi.ac.uk/ena/browser/home (accessed on 2 March 2022).
- Max Planck Institute Genome Project. Available online: https://www.eva.mpg.de/genetics/genome-projects/ (accessed on 1 June 2022).
- National Genomics Data Center. Available online: https://ngdc.cncb.ac.cn/databases (accessed on 2 March 2022).
- Jónsson, H.; Ginolhac, A.; Schubert, M.; Johnson, P.L.F.; Orlando, L. MapDamage2.0: Fast Approximate Bayesian Estimates of Ancient DNA Damage Parameters. Bioinformatics 2013, 29, 1682–1684. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Pin, E.; Pastrello, C.; Tricarico, R.; Papi, L.; Quaia, M.; Fornasarig, M.; Carnevali, I.; Oliani, C.; Fornasin, A.; Agostini, M.; et al. MUTYH c.933+3A&C, Associated with a Severely Impaired Gene Expression, Is the First Italian Founder Mutation in MUTYH-Associated Polyposis. Int. J. Cancer 2013, 132, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Hajdinjak, M.; Mafessoni, F.; Skov, L.; Vernot, B.; Hübner, A.; Fu, Q.; Essel, E.; Nagel, S.; Nickel, B.; Richter, J.; et al. Initial Upper Palaeolithic Humans in Europe Had Recent Neanderthal Ancestry. Nature 2021, 592, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.M.; Sirak, K.A.; Ringbauer, H.; Sedig, J.; Rohland, N.; Cheronet, O.; Mah, M.; Mallick, S.; Olalde, I.; Culleton, B.J.; et al. A Genetic History of the Pre-Contact Caribbean. Nature 2021, 590, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Out, A.A.; Tops, C.M.J.; Nielsen, M.; Weiss, M.M.; van Minderhout, I.J.H.M.; Fokkema, I.F.A.C.; Buisine, M.-P.; Claes, K.; Colas, C.; Fodde, R.; et al. Leiden Open Variation Database of the MUTYH Gene. Hum. Mutat. 2010, 31, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Brace, S.; Diekmann, Y.; Booth, T.J.; van Dorp, L.; Faltyskova, Z.; Rohland, N.; Mallick, S.; Olalde, I.; Ferry, M.; Michel, M.; et al. Ancient Genomes Indicate Population Replacement in Early Neolithic Britain. Nat. Ecol. Evol. 2019, 3, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Mathieson, I.; Lazaridis, I.; Rohland, N.; Mallick, S.; Patterson, N.; Roodenberg, S.A.; Harney, E.; Stewardson, K.; Fernandes, D.; Novak, M.; et al. Genome-Wide Patterns of Selection in 230 Ancient Eurasians. Nature 2015, 528, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Antonio, M.L.; Gao, Z.; Moots, H.M.; Lucci, M.; Candilio, F.; Sawyer, S.; Oberreiter, V.; Calderon, D.; Devitofranceschi, K.; Aikens, R.C.; et al. Ancient Rome: A Genetic Crossroads of Europe and the Mediterranean. Science 2019, 366, 708–714. [Google Scholar] [CrossRef]
- Larena, M.; Sanchez-Quinto, F.; Sjödin, P.; McKenna, J.; Ebeo, C.; Reyes, R.; Casel, O.; Huang, J.-Y.; Hagada, K.P.; Guilay, D.; et al. Multiple Migrations to the Philippines during the Last 50,000 Years. Proc. Natl. Acad. Sci. USA 2021, 118, e2026132118. [Google Scholar] [CrossRef]
- de Barros Damgaard, P.; Martiniano, R.; Kamm, J.; Moreno-Mayar, J.V.; Kroonen, G.; Peyrot, M.; Barjamovic, G.; Rasmussen, S.; Zacho, C.; Baimukhanov, N.; et al. The First Horse Herders and the Impact of Early Bronze Age Steppe Expansions into Asia. Science 2018, 360, aar7711. [Google Scholar] [CrossRef] [Green Version]
- Mathieson, I.; Alpaslan-Roodenberg, S.; Posth, C.; Szécsényi-Nagy, A.; Rohland, N.; Mallick, S.; Olalde, I.; Broomandkhoshbacht, N.; Candilio, F.; Cheronet, O.; et al. The Genomic History of Southeastern Europe. Nature 2018, 555, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Lipson, M.; Szécsényi-Nagy, A.; Mallick, S.; Pósa, A.; Stégmár, B.; Keerl, V.; Rohland, N.; Stewardson, K.; Ferry, M.; Michel, M.; et al. Parallel Palaeogenomic Transects Reveal Complex Genetic History of Early European Farmers. Nature 2017, 551, 368–372. [Google Scholar] [CrossRef]
- Fowler, C.; Olalde, I.; Cummings, V.; Armit, I.; Büster, L.; Cuthbert, S.; Rohland, N.; Cheronet, O.; Pinhasi, R.; Reich, D. A High-Resolution Picture of Kinship Practices in an Early Neolithic Tomb. Nature 2022, 601, 584–587. [Google Scholar] [CrossRef]
- Allentoft, M.E.; Sikora, M.; Sjögren, K.-G.; Rasmussen, S.; Rasmussen, M.; Stenderup, J.; Damgaard, P.B.; Schroeder, H.; Ahlström, T.; Vinner, L.; et al. Population Genomics of Bronze Age Eurasia. Nature 2015, 522, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, N.; Isakov, M.; Booth, T.; Büster, L.; Fischer, C.-E.; Olalde, I.; Ringbauer, H.; Akbari, A.; Cheronet, O.; Bleasdale, M.; et al. Large-Scale Migration into Britain during the Middle to Late Bronze Age. Nature 2022, 601, 588–594. [Google Scholar] [CrossRef]
- Lipson, M.; Ribot, I.; Mallick, S.; Rohland, N.; Olalde, I.; Adamski, N.; Broomandkhoshbacht, N.; Lawson, A.M.; López, S.; Oppenheimer, J.; et al. Ancient West African Foragers in the Context of African Population History. Nature 2020, 577, 665–670. [Google Scholar] [CrossRef]
- Krzewińska, M.; Kılınç, G.M.; Juras, A.; Koptekin, D.; Chyleński, M.; Nikitin, A.G.; Shcherbakov, N.; Shuteleva, I.; Leonova, T.; Kraeva, L.; et al. Ancient Genomes Suggest the Eastern Pontic-Caspian Steppe as the Source of Western Iron Age Nomads. Sci. Adv. 2018, 4, aat4457. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, V.M.; Patterson, N.; Moorjani, P.; Rohland, N.; Bernardos, R.; Mallick, S.; Lazaridis, I.; Nakatsuka, N.; Olalde, I.; Lipson, M.; et al. The Formation of Human Populations in South and Central Asia. Science 2019, 365, aat7487. [Google Scholar] [CrossRef] [PubMed]
- Gakuhari, T.; Nakagome, S.; Rasmussen, S.; Allentoft, M.E.; Sato, T.; Korneliussen, T.; Chuinneagáin, B.N.; Matsumae, H.; Koganebuchi, K.; Schmidt, R.; et al. Ancient Jomon Genome Sequence Analysis Sheds Light on Migration Patterns of Early East Asian Populations. Commun. Biol. 2020, 3, 437. [Google Scholar] [CrossRef] [PubMed]
- Damgaard, P.d.B.; Marchi, N.; Rasmussen, S.; Peyrot, M.; Renaud, G.; Korneliussen, T.; Moreno-Mayar, J.V.; Pedersen, M.W.; Goldberg, A.; Usmanova, E.; et al. 137 Ancient Human Genomes from across the Eurasian Steppes. Nature 2018, 557, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.; Wang, K.; Wilkin, S.; Taylor, W.T.T.; Miller, B.K.; Bemmann, J.H.; Stahl, R.; Chiovelli, C.; Knolle, F.; Ulziibayar, S.; et al. A Dynamic 6,000-Year Genetic History of Eurasia’s Eastern Steppe. Cell 2020, 183, 890–904. [Google Scholar] [CrossRef]
- Hedenstierna-Jonson, C.; Kjellström, A.; Zachrisson, T.; Krzewińska, M.; Sobrado, V.; Price, N.; Günther, T.; Jakobsson, M.; Götherström, A.; Storå, J. A Female Viking Warrior Confirmed by Genomics. Am. J. Phys. Anthropol. 2017, 164, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Hajdinjak, M.; Fu, Q.; Hübner, A.; Petr, M.; Mafessoni, F.; Grote, S.; Skoglund, P.; Narasimham, V.; Rougier, H.; Crevecoeur, I.; et al. Reconstructing the Genetic History of Late Neanderthals. Nature 2018, 555, 652–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.E.; Krause, J.; Briggs, A.W.; Maricic, T.; Stenzel, U.; Kircher, M.; Patterson, N.; Li, H.; Zhai, W.; Fritz, M.H.-Y.; et al. A Draft Sequence of the Neandertal Genome. Science 2010, 328, 710–722. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Posth, C.; Hajdinjak, M.; Petr, M.; Mallick, S.; Fernandes, D.; Furtwängler, A.; Haak, W.; Meyer, M.; Mittnik, A.; et al. The Genetic History of Ice Age Europe. Nature 2016, 534, 200–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipson, M.; Skoglund, P.; Spriggs, M.; Valentin, F.; Bedford, S.; Shing, R.; Buckley, H.; Phillip, I.; Ward, G.K.; Mallick, S.; et al. Population Turnover in Remote Oceania Shortly after Initial Settlement. Curr. Biol. 2018, 28, 1157–1165.e7. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Zhang, J. Why Are Some Human Disease-Associated Mutations Fixed in Mice? Trends Genet. 2003, 19, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Win, A.K.; Jenkins, M.A.; Dowty, J.G.; Antoniou, A.C.; Lee, A.; Giles, G.G.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Ahnen, D.J.; et al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2017, 26, 404–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanea, F.A.; Schraiber, J.G. Multiple Episodes of Interbreeding between Neanderthal and Modern Humans. Nat. Ecol. Evol. 2019, 3, 39–44. [Google Scholar] [CrossRef]
- Wall, J.D.; Yoshihara Caldeira Brandt, D. Archaic Admixture in Human History. Curr. Opin. Genet. Dev. 2016, 41, 93–97. [Google Scholar] [CrossRef]
- Reich, D.; Green, R.E.; Kircher, M.; Krause, J.; Patterson, N.; Durand, E.Y.; Viola, B.; Briggs, A.W.; Stenzel, U.; Johnson, P.L.F.; et al. Genetic History of an Archaic Hominin Group from Denisova Cave in Siberia. Nature 2010, 468, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- Simonti, C.N.; Vernot, B.; Bastarache, L.; Bottinger, E.; Carrell, D.S.; Chisholm, R.L.; Crosslin, D.R.; Hebbring, S.J.; Jarvik, G.P.; Kullo, I.J.; et al. The Phenotypic Legacy of Admixture between Modern Humans and Neandertals. Science 2016, 351, 737–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; O’Connor, T.D.; Jun, G.; Kang, H.M.; Abecasis, G.; Leal, S.M.; Gabriel, S.; Rieder, M.J.; Altshuler, D.; Shendure, J.; et al. Analysis of 6,515 Exomes Reveals the Recent Origin of Most Human Protein-Coding Variants. Nature 2013, 493, 216–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Order | Years (BP) | Fossil Site | Variation | Type | dbSNP | Functional Domain [31] | Reference | |
---|---|---|---|---|---|---|---|---|
cDNA | Protein | |||||||
A.Ancient Human | ||||||||
1 | 30,570 | Dryanovo, Bulgaria | c.55C > T | p.Arg19Ter | Stopgain | rs587780088 | NLS, RPA1 Binding site | [29] |
2 | 9100 | United Kingdom | c.724C > T | p.Arg242Cys | Nonsynonymous SNV | rs200495564 | FeS like | [32] |
3 | 8299 | Bartin, Turkey | c.1178G > A * | p.Gly393Asp | Nonsynonymous SNV | rs36053993 | Nudix like | [33] |
4 | 7628 | Grotta Continenza, Italy | c.527A > G * | p.Tyr176Cys | Nonsynonymous SNV | rs34612342 | EndoIII-6-Helix-barrel like | [34] |
5 | 7500 | Matsu archipelago, China | c.280C > T | p.Arg94Ter | Stopgain | rs138775799 | FeS like, EndoIII-6-Helix-barrel like | [35] |
6 | 7033 | Hungary | c.712C > T | p.Arg238Trp | Nonsynonymous SNV | rs34126013 | FeS like | [33] |
7 | 6713 | Irkutsk, Russia | c.535C > T | p.Arg179Cys | Nonsynonymous SNV | rs747993448 | EndoIII-6-Helix-barrel like | [36] |
8 | 6700 | Irkutsk, Russia | c.1038G > A | p.Trp346Ter | Stopgain | rs1060501324 | Linker, HUS1 binding site | [36] |
9 | 6470 | Oltenia, Romania | c.169G > T | p.Glu57Ter | Stopgain | rs1557487793 | Not a domain | [37] |
10 | 6211 | Germany | c.1205C > T | p.Pro402Leu | Nonsynonymous SNV | rs529008617 | Nudix like | [38] |
11 | 5656 | United Kingdom | c.527A > G * | p.Tyr176Cys | Nonsynonymous SNV | rs34612342 | EndoIII-6-Helix-barrel like | [32] |
12 | 5610 | United Kingdom | c.730C > T | p.Arg244Ter | Stopgain | rs587782885 | FeS like | [32] |
13 | 5455 | Gloucestershire, England | c.712C > T | p.Arg238Trp | Nonsynonymous SNV | rs34126013 | FeS like | [39] |
14 | 4649 | Russia | c.35G > A | p.Trp12Ter | Stopgain | rs1064795596 | MLS, RPA1 Binding site | [40] |
15 | 4249 | Germany | c.1003C > T | p.Gln335Ter | Stopgain | rs587780082 | Linker, HUS1 binding site | [40] |
16 | 4239 | Uybat, Russia | c.780G > A | p.Trp260Ter | Stopgain | rs1338038953 | MSH6 binding site | [36] |
17 | 4100 | Kazakhstan | c.1178G > A * | p.Gly393Asp | Nonsynonymous SNV | rs36053993 | Nudix like | [36] |
18 | 4078 | Verkhni Askiz, Russia | c.316C > T | p.Arg106Trp | Nonsynonymous SNV | rs765123255 | FeS like, EndoIII-6-Helix-barrel like | [36] |
19 | 3850 | Czech Republic | c.535C > T | p.Arg179Cys | Nonsynonymous SNV | rs747993448 | EndoIII-6-Helix-barrel like | [41] |
20 | 3774 | Hungary | c.1204C > T | p.Pro402Ser | Nonsynonymous SNV | rs121908382 | Nudix like | [42] |
21 | 3600 | Kaman, Turkey | c.35G > A | p.Trp12Ter | Stopgain | rs1064795596 | MLS, RPA1 Binding site | [36] |
22 | 3407 | Kazburun, Turkmenistan | c.1205C > T | p.Pro402Leu | Nonsynonymous SNV | rs529008617 | Nudix like | [43] |
23 | 3145 | Uzbekistan | c.1205C > T | p.Pro402Leu | Nonsynonymous SNV | rs529008617 | Nudix like | [44] |
24 | 3099 | Russia | c.712C > T | p.Arg238Trp | Nonsynonymous SNV | rs34126013 | FeS like | [40] |
25 | 3065 | Shum Laka, Cameroon | c.1255C > T | p.Gln419Ter | Stopgain | rs1437789978 | Nudix like | [42] |
26 | 2320 | Laos | c.724C > T | p.Arg242Cys | Nonsynonymous SNV | rs200495564 | FeS like | [45] |
27 | 2248 | United Kingdom | c.1429G > T | p.Glu477Ter | Stopgain | rs121908381 | Nudix like | [41] |
28 | 2234 | Glinoe, Moldova | c.725G > A | p.Arg242His | Nonsynonymous SNV | rs140342925 | FeS like | [43] |
29 | 2203 | Saryarka, Kazakhstan | c.712C > T | p.Arg238Trp | Nonsynonymous SNV | rs34126013 | FeS like | [46] |
30 | 2200 | United Kingdom | c.280C > T | p.Arg94Ter | Stopgain | rs138775799 | FeS like, EndoIII-6-Helix-barrel like | [41] |
31 | 2185 | Czech Republic | c.1178G > A * | p.Gly393Asp | Nonsynonymous SNV | rs36053993 | Nudix like | [41] |
32 | 1933 | Rostov, Russia | c.1272G > A | p.Trp424Ter | Stopgain | rs1060501325 | Nudix like | [46] |
33 | 1850 | Via Paisiello, Italy | c.725G > A | p.Arg242His | Nonsynonymous SNV | rs140342925 | FeS like | [34] |
34 | 1850 | Via Paisiello, Italy | c.535C > T | p.Arg179Cys | Nonsynonymous SNV | rs747993448 | EndoIII-6-Helix-barrel like | [34] |
35 | 1804 | South Kazakhstan | c.35G > A | p.Trp12Ter | Stopgain | rs1064795596 | MLS, RPA1 Binding site | [46] |
36 | 1236 | Arkhangai, Mongolia | c.536G > A | p.Arg179His | Nonsynonymous SNV | rs143353451 | EndoIII-6-Helix-barrel like | [47] |
37 | 1208 | Russia | c.712C > T | p.Arg238Trp | Nonsynonymous SNV | rs34126013 | FeS like | [40] |
38 | 1125 | Cadiz, Spain | c.513G > A | p.Trp171Ter | Stopgain | rs1570423722 | EndoIII-6-Helix-barrel like | [30] |
39 | 1050 | Birka, Sweden | c.85C > T | p.Gln29Ter | Stopgain | rs768386527 | RPA1 Binding site | [48] |
40 | 850 | Atajadizo, Dominican Republic | c.1205C > T | p.Pro402Leu | Nonsynonymous SNV | rs529008617 | Nudix like | [30] |
41 | 850 | North Ossetia | c.1204C > T | p.Pro402Ser | Nonsynonymous SNV | rs121908382 | Nudix like | [46] |
42 | 850 | North Ossetia | c.384G > A | p.Trp128Ter | Stopgain | rs587781295 | EndoIII-6-Helix-barrel like | [46] |
43 | 480 | Atajadizo, Dominican Republic | c.316C > T | p.Arg106Trp | Nonsynonymous SNV | rs765123255 | FeS like, EndoIII-6-Helix-barrel like | [30] |
B.Neanderthals | ||||||||
1 | 65,000 | Sukhoi Kurdzhips, Russia | c.848G > A | p.Gly283Glu | Nonsynonymous SNV | rs730881833 | FeS like, Adenine Binding site | [49] |
2 | 45,500 | Donja Voca, Croatia | c.1205C > T | p.Pro402Leu | Nonsynonymous SNV | rs529008617 | Nudix like | [49] |
3 | 38,310 | Donja Voca, Croatia | c.679C > T | p.Gln227Ter | Stopgain | rs1064796630 | EndoIII-6-helix-barrel like | [50] |
Category | Ancient Samples (%) | ||
---|---|---|---|
Ancient humans | Neanderthals | Denisovans | |
PVs | |||
Types of variants | |||
Stopgain | 14 (58.3) | 1 (33.3) | - |
Nonsynonymous SNV | 10 (41.7) | 2 (66.7) | - |
Total variants | 24 (100) | 3 (100) | - |
Variants shared by | |||
1 carrier | 13 (54.2) | 3 (100) | - |
2 carriers | 6 (25.0) | - | - |
3 carriers | 3 (12.5) | - | - |
4 carriers | 1 (4.2) | - | - |
5 carriers | 1 (4.2) | - | - |
Total variants | 24 (100) | 3 (100) | - |
Total carriers | 42 | 3 | - |
BVs | |||
Types of variants | |||
Synonymous SNV | 72 (57.1) | 12 (38.7) | 4 (57.1) |
Intronic SNV | 44 (34.9) | 15 (48.4) | 1 (14.3) |
Nonsynonymous SNV | 4 (3.2) | 2 (6.5) | - |
UTR | 4 (3.2) | 2 (6.5) | 2 (28.6) |
Deletion | 1 (0.8) | - | - |
Total variants | 126 (100) | 31 (100) | 7 (100) |
Variants shared by | |||
1 carrier | 76 (60.3) | 19 (61.3) | 7 (100) |
2 carriers | 22 (17.5) | 4 (12.9) | - |
3 carriers | 10 (7.9) | 1 (3.2) | - |
4 carriers | 2 (1.6) | 1 (3.2) | - |
5 carriers | 2 (1.6) | 1 (3.2) | - |
7 carriers | 1 (0.8) | 1 (3.2) | - |
11 carriers | 1 (0.8) | 1 (3.2) | - |
12 carriers | 1 (0.8) | 1 (3.2) | - |
14 carriers | 1 (0.8) | 1 (3.2) | - |
17 carriers | 1 (0.8) | 1 (3.2) | - |
21 carriers | 1 (0.8) | - | - |
29 carriers | 1 (0.8) | - | - |
163 carriers | 1 (0.8) | - | - |
166 carriers | 1 (0.8) | - | - |
183 carriers | 1 (0.8) | - | - |
276 carriers | 1 (0.8) | - | - |
382 carriers | 1 (0.8) | - | - |
516 carriers | 1 (0.8) | - | - |
1821 carriers | 1 (0.8) | - | - |
Total variants | 126 (100) | 31 (100) | 7 (100) |
Total carriers | 2217 | 18 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, F.; Li, J.; Lagniton, P.N.P.; Kou, S.H.; Lei, H.; Tam, B.; Wang, S.M. Evolutionary Origin of MUTYH Germline Pathogenic Variations in Modern Humans. Biomolecules 2023, 13, 429. https://doi.org/10.3390/biom13030429
Xiao F, Li J, Lagniton PNP, Kou SH, Lei H, Tam B, Wang SM. Evolutionary Origin of MUTYH Germline Pathogenic Variations in Modern Humans. Biomolecules. 2023; 13(3):429. https://doi.org/10.3390/biom13030429
Chicago/Turabian StyleXiao, Fengxia, Jiaheng Li, Philip Naderev Panuringan Lagniton, Si Hoi Kou, Huijun Lei, Benjamin Tam, and San Ming Wang. 2023. "Evolutionary Origin of MUTYH Germline Pathogenic Variations in Modern Humans" Biomolecules 13, no. 3: 429. https://doi.org/10.3390/biom13030429
APA StyleXiao, F., Li, J., Lagniton, P. N. P., Kou, S. H., Lei, H., Tam, B., & Wang, S. M. (2023). Evolutionary Origin of MUTYH Germline Pathogenic Variations in Modern Humans. Biomolecules, 13(3), 429. https://doi.org/10.3390/biom13030429