Molecular Structure-Based Prediction of Absorption Maxima of Dyes Using ANN Model
Abstract
:1. Introduction
- (i)
- The bond between the semiconductor oxide surface and dye must be strong enough to move the electron injection in the Conduction Band (CB) of the semiconductor oxide.
- (ii)
- The LUMO of the sensitizer should be greater than TiO2 CB. It empowers the charge injection.
- (iii)
- The molecule of dye must be small because the bulky molecule can lead to a lower optical cross-section.
- (iv)
- The dye must be thermally, photochemically, and electrochemically vigorous. If the oxidation-back reduction turnover number exceeds 106, then the stability of DSSC can reach up to approximately 20 years.
- (v)
- The sensitizer should be effective in absorbing all light below the 920 nm wavelength strike to the surface of the semiconductor oxide [2].
- (i)
- To develop an ANN-based model for predicting the absorption maxima of the dye sensitizer used in DSSC.
- (ii)
- To minimize the difference in the experimental and calculated values of absorption maxima.
- (iii)
- To showcase the impacts of the atomic weight of each atom and molecular weight on the value of λmax.
- (iv)
- To demonstrate the impact of different types of bonds on the value of λmax.
- (v)
- To justify the impact of different activation functions, optimizers, and loss functions on the prediction accuracy of λmax using the ANN model.
2. Materials and Methods
2.1. Data Set
2.2. Experiments
2.2.1. Architecture of Model
- i
- Difference λmax: This is the difference in the predicted and experimental value of absorption maxima, as defined in Equation (1):
- ii
- Percentage error (Error%): This is the percentage of difference in the predicted and experimental value of absorption maxima, as defined in Equation (2).
- iii
- Correlation matrix: This matrix shows the correlation between (i) λmax and all bonds in dye molecule (ii) λmax and other additional groups present in a dye structure (iii) λmax and atomic and molecular weight. The matrix represents the direct as well as inverse correlation. The value ‘0’ denotes no correlation, ‘1’ indicates complete and direct correlation. Whereas ‘−1’ shows that the given parameters have a complete and inverse correlation. The values increasing from 0 to 1 show an increasing degree of direct correlation. On the other hand, values approaching from 0 to −1 indicate the increasing degree of negative correlation between the parameters.
2.2.2. Selection of Hyperparameters
Selection of Activation Function
Selection of Loss Function
Selection of Optimizer
3. Results
3.1. Prediction of λmax Based on the C-C, C=C, C-N, C=O, Metal-NCS, C-O, Metal-N Bonds
3.2. Prediction of λmax Based on N+Bu4, O-H, O-Na, C-S, and C-Se Bonds
3.3. Prediction of λmax Based on C-S, N+(C4H9), O-H, C-F, N≡N Bonds
3.4. Prediction of λmax Based on O-H, N≡N, TBA+, N-H Bond
3.5. Prediction of λmax Based on Atomic and Molecular Weight
3.6. Difference and Percentage Error
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kåberger, T. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 2018, 1, 48–52. [Google Scholar]
- Tomar, N.; Dhaka, V.S.; Surolia, P.K. A brief review on carbon nanomaterial counter electrodes for N719 based dye-sensitized solar cells. Mater. Today Proc. 2021, 43, 2975–2978. [Google Scholar] [CrossRef]
- Gangopadhyay, U.; Jana, S.; Das, S. State of Art of Solar Photovoltaic Technology. In Conference Papers in Science; Hindawi: London, UK, 2013. [Google Scholar]
- Giribabu, L.; Sudhakar, K.; Velkannan, V. Phthalocyanines: Potential alternative sensitizers to Ru (II) polypyridyl complexes for dye-sensitized solar cells. Curr. Sci. 2012, 102, 991–1000. [Google Scholar]
- Glunz, S.W.; Feldmann, F. SiO2 surface passivation layers—A key technology for silicon solar cells. Sol. Energy Mater. Sol. Cells 2018, 185, 260–269. [Google Scholar] [CrossRef]
- Lyons, C.; Dev, P.; Maji, P.; Rathi, N.; Surolia, P.K.; Byrne, O.; Xiao, X.; English, N.J.; Magner, E.; MacElroy, J.M.D.; et al. Silicon-bridged triphenylamine-based organic dyes for efficient dye-sensitised solar cells. Sol. Energy 2018, 160, 64–75. [Google Scholar] [CrossRef]
- Meng, K.; Surolia, P.K.; Byrne, O.; Thampi, K.R. Quantum dot and quantum dot-dye co-sensitized solar cells containing organic thiolate—Disulfide redox electrolyte. J. Power Sources 2015, 275, 681–687. [Google Scholar] [CrossRef]
- Tomar, N.; Agrawal, A.; Dhaka, V.S.; Surolia, P.K. Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends. Sol. Energy 2020, 207, 59–76. [Google Scholar] [CrossRef]
- Brennan, L.J.; Surolia, P.K.; Rovelli, L.; Loudon, A.; Torsney, S.P.; Roche, S.; Thampi, K.R.; Gun’ko, Y.K. Electrophoretic separation and deposition of metal–graphene nanocomposites and their application as electrodes in solar cells. RSC Adv. 2016, 6, 64097–64109. [Google Scholar] [CrossRef]
- Byrne, O.; Coughlan, A.; Surolia, P.K.; Thampi, K.R. Succinonitrile-based solid-state electrolytes for dye-sensitised solar cells. Prog. Photovolt. Res. Appl. 2015, 23, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Calogero, G.; Sinopoli, A.; Citro, I.; Di Marco, G.; Petrov, V.; Diniz, A.M.; Parola, A.J.; Pina, F. Synthetic analogues of anthocyanins as sensitizers for dye-sensitized solar cells. Photochem. Photobiol. Sci. 2013, 12, 883–894. [Google Scholar] [CrossRef]
- Sheehan, S.; Surolia, P.; Byrne, O.; Garner, S.; Cimo, P.; Li, X.; Dowling, D.; Thampi, K. Flexible glass substrate based dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 2015, 132, 237–244. [Google Scholar] [CrossRef]
- Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2015, 52, 54–64. [Google Scholar] [CrossRef]
- Meyer, G.J. Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers; ACS Publications: Washington, DC, USA, 1997. [Google Scholar]
- Selvaraj, P.; Baig, H.; Mallick, T.K.; Siviter, J.; Montecucco, A.; Li, W.; Paul, M.; Sweet, T.; Gao, M.; Knox, A.R.; et al. Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Sol. Energy Mater. Sol. Cells 2018, 175, 29–34. [Google Scholar] [CrossRef]
- Richhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B. Natural dyes for dye sensitized solar cell: A review. Renew. Sustain. Energy Rev. 2017, 69, 705–718. [Google Scholar] [CrossRef]
- Jin, L.; Shi, S.; Zhao, C.; Yu, X.; Lu, J.; Wang, Q.; Wei, Y. Y-shaped organic dyes with D2–π–A configuration as efficient co-sensitizers for ruthenium-based dye sensitized solar cells. J. Power Sources 2021, 481, 228952. [Google Scholar] [CrossRef]
- Juwita, R.; Lin, J.-Y.; Lin, S.-J.; Liu, Y.-C.; Wu, T.-Y.; Feng, Y.-M.; Chen, C.-Y.; Tsai, H.-H.G.; Wu, C.-G. Osmium sensitizer with enhanced spin–orbit coupling for panchromatic dye-sensitized solar cells. J. Mater. Chem. A 2020, 8, 12361–12369. [Google Scholar] [CrossRef]
- Semalti, P.; Sharma, S.N. Dye sensitized solar cells (DSSCs) electrolytes and natural photo-sensitizers: A review. J. Nanosci. Nanotechnol. 2020, 20, 3647–3658. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Roberto, D.; Fagnani, F. Copper Complexes as Alternative Redox Mediators in Dye-Sensitized Solar Cells. Molecules 2021, 26, 194. [Google Scholar] [CrossRef]
- Bobo, M.V.; Paul, A.; Robb, A.J.; Arcidiacono, A.M.; Smith, M.D.; Hanson, K.; Vannucci, A.K. Bis-Cyclometalated Iridium Complexes Containing 4, 4′-Bis (phosphonomethyl)-2, 2′-bipyridine Ligands: Photophysics, Electrochemistry, and High-Voltage Dye-Sensitized Solar Cells. Inorg. Chem. 2020, 59, 6351–6358. [Google Scholar] [CrossRef]
- Alhorani, S.; Kumar, S.; Genwa, M.; Meena, P. Review of latest efficient sensitizer in dye-sensitized solar cells. In Proceedings of the AIP Conference Proceedings, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: College Park, MD, USA, 2020; p. 030632. [Google Scholar]
- Lyons, C.; Rathi, N.; Dev, P.; Byrne, O.; Surolia, P.K.; Maji, P.; MacElroy, J.; Yella, A.; Grätzel, M.; Magner, E. Organic dyes containing coplanar dihexyl-substituted dithienosilole groups for efficient dye-sensitised solar cells. Int. J. Photoenergy 2017, 2017, 7594869. [Google Scholar] [CrossRef] [Green Version]
- Ghavre, M.; Byrne, O.; Altes, L.; Surolia, P.K.; Spulak, M.; Quilty, B.; Thampi, K.R.; Gathergood, N. Low toxicity functionalised imidazolium salts for task specific ionic liquid electrolytes in dye-sensitised solar cells: A step towards less hazardous energy production. Green Chem. 2014, 16, 2252–2265. [Google Scholar] [CrossRef]
- Sekar, N.; Gehlot, V.Y. Metal complex dyes for dye-sensitized solar cells: Recent developments. Resonance 2010, 15, 819–831. [Google Scholar] [CrossRef]
- Cai-Rong, Z.; Zi-Jiang, L.; Yu-Hong, C.; Hong-Shan, C.; You-Zhi, W.; Li-Hua, Y. DFT and TDDFT study on organic dye sensitizers D5, DST and DSS for solar cells. J. Mol. Struct. THEOCHEM 2009, 899, 86–93. [Google Scholar] [CrossRef]
- Jamshidvand, A.; Keshavarzi, R.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Afzali, N.; Nematollahi, J.; Amini, M. A novel Ru (II) complex with high absorbance coefficient: Efficient sensitizer for dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 2021, 32, 9345–9356. [Google Scholar] [CrossRef]
- El alamy, A.; Bourass, M.; Amine, A.; Hamidi, M.; Bouachrine, M. New organic dyes based on phenylenevinylene for solar cells: DFT and TD-DFT investigation. Karbala Int. J. Mod. Sci. 2017, 3, 75–82. [Google Scholar] [CrossRef]
- Nashed, R.; Ismail, Y.; Allam, N.K. Recent advances in the use of density functional theory to design efficient solar energy-based renewable systems. J. Renew. Sustain. Energy 2013, 5, 022701. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Wang, L.; Liang, G.; Wang, L.; Shen, X.; Xu, W. QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 76, 239–247. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Wang, L.; Liang, G.; Wang, L.; Shen, X. Artificial neural network-based QSPR study on absorption maxima of organic dyes for dye-sensitised solar cells. Mol. Simul. 2011, 37, 1–10. [Google Scholar] [CrossRef]
- Schweitzer, R.C.; Morris, J.B. The development of a quantitative structure property relationship (QSPR) for the prediction of dielectric constants using neural networks. Anal. Chim. Acta 1999, 384, 285–303. [Google Scholar] [CrossRef]
- Wessel, M.D.; Jurs, P.C. Prediction of reduced ion mobility constants from structural information using multiple linear regression analysis and computational neural networks. Anal. Chem. 1994, 66, 2480–2487. [Google Scholar] [CrossRef]
- Asadollahi-Baboli, M.; Mani-Varnosfaderani, A. Application of computational methods to predict absorption maxima of organic dyes used in solar cells. J. Theor. Comput. Chem. 2013, 12, 1250114. [Google Scholar] [CrossRef]
- Andrei, N. A note on memory-less SR1 and memory-less BFGS methods for large-scale unconstrained optimization. Numer. Algorithms 2022, 90, 223–240. [Google Scholar] [CrossRef]
- Zupan, J.; Novič, M.; Ruisánchez, I. Kohonen and counterpropagation artificial neural networks in analytical chemistry. Chemom. Intell. Lab. Syst. 1997, 38, 1–23. [Google Scholar] [CrossRef]
- Heidari, E.; Sobati, M.A.; Movahedirad, S. Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemom. Intell. Lab. Syst. 2016, 155, 73–85. [Google Scholar] [CrossRef]
- Taghavi, M.; Gharehghani, A.; Nejad, F.B.; Mirsalim, M. Developing a model to predict the start of combustion in HCCI engine using ANN-GA approach. Energy Convers. Manag. 2019, 195, 57–69. [Google Scholar] [CrossRef]
- Pradhan, N.; Singh Dhaka, V.; Rani, G.; Chaudhary, H. Machine Learning Model for Multi-View Visualization of Medical Images. Comput. J. 2022, 65, 805–817. [Google Scholar] [CrossRef]
- Pradhan, N.; Dhaka, V.S.; Rani, G.; Chaudhary, H. Transforming view of medical images using deep learning. Neural Comput. Appl. 2020, 32, 15043–15054. [Google Scholar] [CrossRef]
- Chaves, L.; Marques, G. Data Mining Techniques for Early Diagnosis of Diabetes: A Comparative Study. Appl. Sci. 2021, 11, 2218. [Google Scholar] [CrossRef]
- Dhaka, V.S.; Rani, G.; Oza, M.G.; Sharma, T.; Misra, A. A deep learning model for mass screening of COVID-19. Int. J. Imaging Syst. Technol. 2021, 31, 483–498. [Google Scholar] [CrossRef]
- Rani, G.; Oza, M.G.; Dhaka, V.S.; Pradhan, N.; Verma, S.; Rodrigues, J.J. Applying deep learning-based multi-modal for detection of coronavirus. Multimed. Syst. 2022, 28, 1251–1262. [Google Scholar] [CrossRef]
- Sinwar, D.; Dhaka, V.S.; Sharma, M.K.; Rani, G. AI-Based Yield Prediction and Smart Irrigation. In Internet of Things and Analytics for Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 155–180. [Google Scholar]
- Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Ijaz, M.F.; Woźniak, M. A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors 2021, 21, 4749. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, H.; Awa, M.; Ono, T.; Arakawa, H. Effects of Dye-Adsorption Solvent on the Performances of the Dye-Sensitized Solar Cells Based on Black Dye. Chem. Asian J. 2012, 7, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.A.; Le Pleux, L.; Fortage, J.; Pellegrin, Y.; Blart, E.; Odobel, F.; Hagfeldt, A.; Boschloo, G. Role of the Triiodide/Iodide Redox Couple in Dye Regeneration in p-Type Dye-Sensitized Solar Cells. Langmuir 2012, 28, 6485–6493. [Google Scholar] [CrossRef] [PubMed]
- Nazeeruddin, M.K.; Pechy, P.; Renouard, T.; Zakeeruddin, S.M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613–1624. [Google Scholar] [CrossRef] [PubMed]
- Nazeeruddin, M.K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127, 16835–16847. [Google Scholar] [CrossRef]
- Wen, P.; Han, Y.; Zhao, W. Influence of TiO2 nanocrystals fabricating dye-sensitized solar cell on the absorption spectra of N719 sensitizer. Int. J. Photoenergy 2012, 2012, 906198. [Google Scholar] [CrossRef] [Green Version]
- Yen, Y.S.; Chen, Y.C.; Hsu, Y.C.; Chou, H.H.; Lin, J.T.; Yin, D.J. Heteroleptic Ruthenium Sensitizers That Contain an Ancillary Bipyridine Ligand Tethered with Hydrocarbon Chains for Efficient Dye-Sensitized Solar Cells. Chem. A Eur. J. 2011, 17, 6781–6788. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Baranoff, E.; Grätzel, M. Dye-sensitized solar cells: A brief overview. Sol. Energy 2011, 85, 1172–1178. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wu, S.J.; Wu, C.G.; Chen, J.G.; Ho, K.C. A Ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew. Chem. 2006, 118, 5954–5957. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wu, S.J.; Li, J.Y.; Wu, C.G.; Chen, J.G.; Ho, K.C. A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv. Mater. 2007, 19, 3888–3891. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S.M.; Grätzel, M. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 2008, 130, 10720–10728. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, S.; Zhang, M.; Cai, N.; Wang, Y.; Wang, P. An extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells: The effects of π-conjugation extension. J. Phys. Chem. C 2009, 113, 14559–14566. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S.M.; Grätzel, M. A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chem. Commun. 2008, 59, 2635–2637. [Google Scholar] [CrossRef]
- Gao, F.; Cheng, Y.; Yu, Q.; Liu, S.; Shi, D.; Li, Y.; Wang, P. Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells. Inorg. Chem. 2009, 48, 2664–2669. [Google Scholar] [CrossRef]
- Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S.M.; Grätzel, M. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J. Am. Chem. Soc. 2005, 127, 808–809. [Google Scholar] [CrossRef]
- Kuang, D.; Klein, C.; Ito, S.; Moser, J.E.; Humphry-Baker, R.; Evans, N.; Duriaux, F.; Graetzel, C.; Zakeeruddin, S.M.; Grätzel, M. High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv. Mater. 2007, 19, 1133–1137. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 2009, 3, 3103–3109. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, J.G.; Wu, S.J.; Li, J.Y.; Wu, C.G.; Ho, K.C. Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells. Angew. Chem. 2008, 120, 7452–7455. [Google Scholar] [CrossRef]
- Li, J.-Y.; Chen, C.-Y.; Chen, J.-G.; Tan, C.-J.; Lee, K.-M.; Wu, S.-J.; Tung, Y.-L.; Tsai, H.-H.; Ho, K.-C.; Wu, C.-G. Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. J. Mater. Chem. 2010, 20, 7158–7164. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Pootrakulchote, N.; Wu, S.-J.; Wang, M.; Li, J.-Y.; Tsai, J.-H.; Wu, C.-G.; Zakeeruddin, S.M.; Gratzel, M. New ruthenium sensitizer with carbazole antennas for efficient and stable thin-film dye-sensitized solar cells. J. Phys. Chem. C 2009, 113, 20752–20757. [Google Scholar] [CrossRef]
- Choi, H.; Baik, C.; Kim, S.; Kang, M.-S.; Xu, X.; Kang, H.S.; Kang, S.O.; Ko, J.; Nazeeruddin, M.K.; Grätzel, M. Molecular engineering of hybrid sensitizers incorporating an organic antenna into ruthenium complex and their application in solar cells. N. J. Chem. 2008, 32, 2233–2237. [Google Scholar] [CrossRef]
- Chen, W.-C.; Kong, F.-T.; Ghadari, R.; Li, Z.-Q.; Guo, F.-L.; Liu, X.-P.; Huang, Y.; Yu, T.; Hayat, T.; Dai, S.-Y. Unravelling the structural-electronic impact of arylamine electron-donating antennas on the performances of efficient ruthenium sensitizers for dye-sensitized solar cells. J. Power Sources 2017, 346, 71–79. [Google Scholar] [CrossRef]
- Chen, B.-S.; Chen, K.; Hong, Y.-H.; Liu, W.-H.; Li, T.-H.; Lai, C.-H.; Chou, P.-T.; Chi, Y.; Lee, G.-H. Neutral, panchromatic Ru (II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chem. Commun. 2009, 39, 5844–5846. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-W.; Chou, C.-C.; Hu, F.-C.; Wu, K.-L.; Chi, Y.; Clifford, J.N.; Palomares, E.; Liu, S.-H.; Chou, P.-T.; Wei, T.-C. Panchromatic Ru (II) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells. J. Mater. Chem. A 2014, 2, 17618–17627. [Google Scholar] [CrossRef]
- Chou, C.C.; Wu, K.L.; Chi, Y.; Hu, W.P.; Yu, S.J.; Lee, G.H.; Lin, C.L.; Chou, P.T. Ruthenium (II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. Angew. Chem. 2011, 123, 2102–2106. [Google Scholar] [CrossRef]
- Kimura, M.; Masuo, J.; Tohata, Y.; Obuchi, K.; Masaki, N.; Murakami, T.N.; Koumura, N.; Hara, K.; Fukui, A.; Yamanaka, R. Improvement of TiO2/dye/electrolyte interface conditions by positional change of alkyl chains in modified panchromatic Ru complex dyes. Chem.—A Eur. J. 2013, 19, 1028–1034. [Google Scholar] [CrossRef]
- Wu, K.-L.; Hsu, H.-C.; Chen, K.; Chi, Y.; Chung, M.-W.; Liu, W.-H.; Chou, P.-T. Development of thiocyanate-free, charge-neutral Ru (II) sensitizers for dye-sensitized solar cells. Chem. Commun. 2010, 46, 5124–5126. [Google Scholar] [CrossRef]
- Wang, S.-W.; Wu, K.-L.; Ghadiri, E.; Lobello, M.G.; Ho, S.-T.; Chi, Y.; Moser, J.-E.; De Angelis, F.; Grätzel, M.; Nazeeruddin, M.K. Engineering of thiocyanate-free Ru (II) sensitizers for high efficiency dye-sensitized solar cells. Chem. Sci. 2013, 4, 2423–2433. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.-L.; Ku, W.-P.; Clifford, J.N.; Palomares, E.; Ho, S.-T.; Chi, Y.; Liu, S.-H.; Chou, P.-T.; Nazeeruddin, M.K.; Grätzel, M. Harnessing the open-circuit voltage via a new series of Ru (II) sensitizers bearing (iso-) quinolinyl pyrazolate ancillaries. Energy Environ. Sci. 2013, 6, 859–870. [Google Scholar] [CrossRef]
- Sahin, C.; Tozlu, C.; Ocakoglu, K.; Zafer, C.; Varlikli, C.; Icli, S. Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC. Inorg. Chim. Acta 2008, 361, 671–676. [Google Scholar] [CrossRef]
- Qin, Y.; Peng, Q. Ruthenium sensitizers and their applications in dye-sensitized solar cells. Int. J. Photoenergy 2012, 2012, 291579. [Google Scholar] [CrossRef] [Green Version]
- Sahin, C.; Dittrich, T.; Varlikli, C.; Icli, S.; Lux-Steiner, M.C. Role of side groups in pyridine and bipyridine ruthenium dye complexes for modulated surface photovoltage in nanoporous TiO2. Sol. Energy Mater. Sol. Cells 2010, 94, 686–690. [Google Scholar] [CrossRef]
- Willinger, K.; Fischer, K.; Kisselev, R.; Thelakkat, M. Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium (II) donor-antenna dyes. J. Mater. Chem. 2009, 19, 5364–5376. [Google Scholar] [CrossRef]
- Giribabu, L.; Kumar, C.V.; Rao, C.S.; Reddy, V.G.; Reddy, P.Y.; Chandrasekharam, M.; Soujanya, Y. High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells. Energy Environ. Sci. 2009, 2, 770–773. [Google Scholar] [CrossRef]
- Kuang, D.; Ito, S.; Wenger, B.; Klein, C.; Moser, J.-E.; Humphry-Baker, R.; Zakeeruddin, S.M.; Grätzel, M. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J. Am. Chem. Soc. 2006, 128, 4146–4154. [Google Scholar] [CrossRef]
- Klein, C.; Nazeeruddin, M.K.; Di Censo, D.; Liska, P.; Grätzel, M. Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorg. Chem. 2004, 43, 4216–4226. [Google Scholar] [CrossRef]
- Hussain, M.; El-Shafei, A.; Islam, A.; Han, L. Structure–property relationship of extended π-conjugation of ancillary ligands with and without an electron donor of heteroleptic Ru (II) bipyridyl complexes for high efficiency dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8401–8408. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekharam, M.; Suresh, T.; Singh, S.P.; Priyanka, B.; Bhanuprakash, K.; Islam, A.; Han, L.; Kantam, M.L. Functionalized styryl bipyridine as a superior chelate for a ruthenium sensitizer in dye sensitized solar cells. Dalton Trans. 2012, 41, 8770–8772. [Google Scholar] [CrossRef]
- Sivakumar, R.; Recabarren, R.; Ramkumar, S.; Manivel, A.; Alzate-Morales, J.; Contreras, D.; Manidurai, P. Ruthenium (ii) complexes incorporating carbazole–diazafluorene based bipolar ligands for dye sensitized solar cell applications. N. J. Chem. 2017, 41, 5605–5612. [Google Scholar] [CrossRef]
Dye | Structure | Formula | Mol. Weight | Atomic Weight | λmax (MLCT) | Solvent | C-C Bond | C=C Bond | C-N Bond | Metal-N Bond | C=O Bond | Metal-NCS Bond | C-O Bond | Other Bonds/ Groups | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N749 | C69H116N9O6RuS3 | 1364.98 | C-828.74 H-116.92 N-126.06 O-96 Ru-101.07 S-96.19 | 600 | DMF | 11 | 6 | 6 | 3 | 3 | 3 | 3 | N+Bu4=2 | [48] | |
N719 | C58H86N8O8RuS2 | 1188.55 | C-696.62 H-86.68 N-112.05 O-128.00 Ru-101.07 S-64.13 | 525 | DMF | 13 | 8 | 8 | 4 | 4 | 2 | 4 | N+Bu4 =2 | [49,50] | |
Z907 | C42H52N6O4RuS2 | 870.10 | C-504.45 H-52.41 N-84.04 O-64 Ru-101.07 S-64.13 | 520 | DMF | 30 | 8 | 8 | 4 | 2 | 2 | 2 | O-H=1 O-Na=1 | [51] | |
YS-1 | C58H48N6O4RuS2 | 1058.24 | C-696.62 H-48.38 N-84.04 O-64 Ru-101.07 S-64.13 | 536 | DMF | 40 | 16 | 8 | 4 | 2 | 2 | 2 | O-H=2 | [51] | |
YS-2 | C74H80N6O4RuS2 | 1282.66 | C-888.79 H-80.63 N-84.04 O-64 Ru-101.07 S-64.13 | 536 | DMF | 56 | 16 | 8 | 4 | 2 | 2 | 2 | O-H=2 | [51] |
Dye | λmax (Experimental) | λmax (Predicted) | Difference | Percentage Error | t-Score | Ref. |
---|---|---|---|---|---|---|
N749 | 600 | 599.9605103 | −0.039489746 | 0.006581625 | 2.962804 | [48] |
N719 | 525 | 525.0811157 | 0.081115723 | 0.015450614 | 2.573224 | [52] |
Z907 | 520 | 518.3882446 | −1.611755371 | 0.309952945 | 2.554664 | [51] |
YS-1 | 536 | 535.9921265 | −0.007873535 | 0.001468943 | 2.633939 | [51] |
YS-2 | 536 | 536.6464233 | 0.64642334 | 0.120601371 | 2.637666 | [51] |
YS-3 | 539 | 538.6637573 | −0.336242676 | 0.062382687 | 2.65839 | [51] |
YS-4 | 535 | 534.9170532 | −0.082946777 | 0.015504071 | 2.642976 | [51] |
YS-5 | 555 | 554.8757324 | −0.124267578 | 0.022390554 | 2.746662 | [51] |
CYC-B1 | 553 | 554.9368896 | 1.936889648 | 0.350251287 | 2.737349 | [53] |
CYC-B3 | 544 | 543.5513306 | −0.448669434 | 0.082475998 | 2.699216 | [54] |
SJW-E1 | 546 | 545.9083252 | −0.091674805 | 0.016790258 | 2.713337 | [54] |
C101 | 547 | 545.3406372 | −1.659362793 | 0.303357005 | 2.72482 | [55] |
C102 | 547 | 545.6287842 | −1.37121582 | 0.250679314 | 2.728966 | [55] |
C103 | 550 | 549.0956421 | −0.90435791 | 0.164428711 | 2.74789 | [56] |
C104 | 553 | 554.3543701 | 1.354370117 | 0.24491322 | 2.764281 | [57] |
C105 | 550 | 546.0117188 | −3.98828125 | 0.725142062 | 2.759501 | [58] |
C106 | 550 | 549.9251099 | −0.074890137 | 0.013616389 | 2.759075 | [55] |
C107 | 559 | 558.5645142 | −0.43548584 | 0.07790444 | 2.808949 | [56] |
K19 | 545 | 545.203064 | 0.203063965 | 0.037259445 | 2.740354 | [59] |
K77 | 546 | 544.6682739 | −1.331726074 | 0.243905872 | 2.752063 | [60] |
CYC-B11 | 554 | 552.9317627 | −1.068237305 | 0.19282262 | 2.796931 | [61] |
CYC-B6L | 551 | 545.9569702 | −5.043029785 | 0.915250421 | 2.790254 | [62] |
CYC-B6S | 548 | 547.302124 | −0.697875977 | 0.12734963 | 2.774375 | [62] |
CYC-B7 | 551 | 552.8936157 | 1.893615723 | 0.343668908 | 2.791177 | [63] |
CYC-B13 | 547 | 548.375 | 1.375 | 0.251371115 | 2.775524 | [64] |
JK-55 | 539 | 538.1456909 | −0.854309082 | 0.158498898 | 2.74214 | [65] |
JK-56 | 537 | 538.4175415 | 1.417541504 | 0.26397422 | 2.734822 | [65] |
RC-31 | 560 | 558.7681274 | −1.231872559 | 0.219977245 | 2.860881 | [66] |
RC-32 | 564 | 562.3169556 | −1.683044434 | 0.298412144 | 2.884413 | [66] |
RC-36 | 547 | 545.4786377 | −1.521362305 | 0.278128386 | 2.798735 | [66] |
PRT1 | 520 | 520.6152954 | 0.61529541 | 0.118326038 | 2.663049 | [67] |
PRT2 | 517 | 517.5576172 | 0.557617188 | 0.107856326 | 2.652854 | [67] |
PRT3 | 519 | 519.3753052 | 0.375305176 | 0.072313137 | 2.668113 | [67] |
PRT4 | 519 | 514.8287964 | −4.171203613 | 0.803700089 | 2.678184 | [67] |
PRT21 | 514 | 515.2487793 | 1.248779297 | 0.242953166 | 2.651222 | [68] |
PRT22 | 520 | 519.6818237 | −0.31817627 | 0.061187744 | 2.688368 | [68] |
PRT23 | 536 | 537.9351196 | 1.935119629 | 0.361029774 | 2.774103 | [68] |
PRT24 | 537 | 537.1176147 | 0.117614746 | 0.021902187 | 2.787605 | [68] |
TF1 | 510 | 509.9632568 | −0.036743164 | 0.007204542 | 2.653727 | [69] |
TF2 | 509 | 510.1255798 | 1.125579834 | 0.221135527 | 2.651082 | [69] |
TF3 | 513 | 513.4284058 | 0.428405762 | 0.083509892 | 2.676337 | [69] |
TF4 | 516 | 516.3215942 | 0.321594238 | 0.062324464 | 2.69655 | [69] |
MJ-4 | 594 | 594.5967407 | 0.596740723 | 0.100461401 | 3.109695 | [70] |
MJ-6 | 608 | 606.5596313 | −1.440368652 | 0.236902744 | 3.174494 | [70] |
MJ-7 | 603 | 606.5596313 | 3.559631348 | 0.590320289 | 3.119411 | [70] |
MJ-10 | 630 | 630.5605469 | 0.560546875 | 0.088975698 | 3.233595 | [70] |
MJ-11 | 630 | 630.5605469 | 0.560546875 | 0.088975698 | 3.149689 | [70] |
MJ-12 | 631 | 632.057312 | 1.057312012 | 0.167561337 | 3.010226 | [70] |
TFRS-1 | 532 | 534.241333 | 2.241333008 | 0.421303183 | 2.251667 | [71] |
TFRS-2 | 533 | 533.7162476 | 0.716247559 | 0.1343804 | 2.269726 | [71] |
TFRS-3 | 503 | 503.7233887 | 0.723388672 | 0.143814847 | 2.151846 | [71] |
TFRS-4 | 501 | 501.8835449 | 0.883544922 | 0.176356271 | 2.146519 | [71] |
TFRS-21 | 499 | 500.2005005 | 1.200500488 | 0.240581259 | 2.137079 | [72] |
TFRS-22 | 473 | 473.5461426 | 0.546142578 | 0.115463547 | 2.022101 | [72] |
TFRS-24 | 485 | 485.4335938 | 0.43359375 | 0.089400776 | 1.963301 | [72] |
TFRS-51 | 499 | 499.3976135 | 0.397613525 | 0.079682067 | 1.925546 | [73] |
TFRS-52 | 495 | 495.3208618 | 0.320861816 | 0.064820565 | 1.866991 | [73] |
TFRS-53 | 500 | 500.4888611 | 0.488861084 | 0.097772218 | 1.795062 | [73] |
TFRS-54 | 496 | 496.4121094 | 0.412109375 | 0.083086565 | 1.695218 | [73] |
CS9 | 518 | 518.0759277 | 0.075927734 | 0.014657863 | 1.573186 | [74] |
A597 | 539 | 538.2700806 | −0.729919434 | 0.135421053 | 1.632301 | [75] |
CS27 | 517 | 517.1707764 | 0.170776367 | 0.033032179 | 1.590288 | [76] |
CS28 | 518 | 517.486084 | −0.513916016 | 0.099211589 | 1.579045 | [76] |
CS32 | 518 | 518.0393066 | 0.039306641 | 0.007588155 | 1.557655 | [76] |
CS43 | 518 | 518.1796875 | 0.1796875 | 0.034688707 | 1.529054 | [76] |
CS17 | 530 | 529.7614136 | −0.238586426 | 0.045016307 | 1.521574 | [76] |
CS22 | 533 | 532.6157837 | −0.384216309 | 0.072085612 | 1.578218 | [76] |
LXJ-1 | 549 | 548.1496582 | −0.850341797 | 0.154889211 | 1.686294 | [56] |
KW-1# | 515 | 514.050293 | −0.949707031 | 0.184409127 | 1.566551 | [77] |
KW-2# | 550 | 549.9004517 | −0.09954834 | 0.018099697 | 1.529517 | [77] |
HRD-1 | 543 | 542.3900757 | −0.609924316 | 0.112324923 | 1.449902 | [78] |
K-73 | 545 | 545.2966309 | 0.296630859 | 0.05442768 | 1.48967 | [79] |
KC-5# | 537 | 537.1211548 | 0.121154785 | 0.022561412 | 1.454641 | [80] |
KC-6# | 531 | 527.5883179 | −3.411682129 | 0.642501354 | 1.539624 | [80] |
KC-7# | 533 | 530.7481079 | −2.25189209 | 0.422493815 | 1.649544 | [80] |
KC-8 | 522 | 522.1340332 | 0.134033203 | 0.02567686 | 1.730241 | [80] |
MH06 | 541 | 540.6497192 | −0.350280762 | 0.064746909 | 1.841917 | [81] |
MH11 | 547 | 546.6559448 | −0.344055176 | 0.062898569 | 1.987435 | [81] |
MC119 | 548 | 548.0170898 | 0.017089844 | 0.003118585 | 1.976855 | [82] |
S3 | 516 | 515.6741333 | −0.325866699 | 0.063152462 | 1.256043 | [83] |
S4 | 518 | 519.6868286 | 1.686828613 | 0.325642586 | 1.462133 | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomar, N.; Rani, G.; Dhaka, V.S.; Surolia, P.K.; Gupta, K.; Vocaturo, E.; Zumpano, E. Molecular Structure-Based Prediction of Absorption Maxima of Dyes Using ANN Model. Big Data Cogn. Comput. 2023, 7, 115. https://doi.org/10.3390/bdcc7020115
Tomar N, Rani G, Dhaka VS, Surolia PK, Gupta K, Vocaturo E, Zumpano E. Molecular Structure-Based Prediction of Absorption Maxima of Dyes Using ANN Model. Big Data and Cognitive Computing. 2023; 7(2):115. https://doi.org/10.3390/bdcc7020115
Chicago/Turabian StyleTomar, Neeraj, Geeta Rani, Vijaypal Singh Dhaka, Praveen K. Surolia, Kalpit Gupta, Eugenio Vocaturo, and Ester Zumpano. 2023. "Molecular Structure-Based Prediction of Absorption Maxima of Dyes Using ANN Model" Big Data and Cognitive Computing 7, no. 2: 115. https://doi.org/10.3390/bdcc7020115