Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Catalyst Characterization
2.3. Hydrogenation Reaction
2.4. Product Analysis
3. Results and Discussion
3.1. Catalysts Characterization
3.2. Hydrogenation of ADN to HMDA
3.3. The Effect of Reaction Temperature, H2 Pressure, Catalyst Loading, and ADN/HMDA Ratio
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Holbery, J.; Houston, D. Natural-fiber-reinforced polymer composites in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Papadopoulou, E.L.; Pignatelli, F.; Marras, S.; Marini, L.; Davis, A.; Athanassiou, A.; Bayer, I.S. Nylon 6,6/graphene nanoplatelet composite films obtained from a new solvent. RSC Adv. 2016, 6, 6823–6831. [Google Scholar] [CrossRef]
- Pan, G.; Zhao, Y.; Xu, H.; Hou, X.; Yang, Y. Compression molded composites from discarded nylon 6/nylon 6,6 carpets for sustainable industries. J. Clean. Prod. 2016, 117, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry. Synthesis 2004, 2004, 1127. [Google Scholar] [CrossRef] [Green Version]
- Maximize Market Research. Nylon 6 & 66 Market Analysis by Product (Nylon 6, Nylon 66) by Application (Automotive, Electrical & Electronic, Engineering Plastic, Textiles, Others), by Region, and Segment Forecasts, 2018–2025, 2019. Available online: https://www.maximizemarketresearch.com/market-report/global-nylon-66-market/23062/ (accessed on 23 September 2020).
- Botelho, E.C.; Scherbakoff, N.; Rezende, M.C.; Kawamoto, A.M.; Sciamareli, J. Synthesis of polyamide 6/6 by interfacial polycondensation with the simultaneous impregnation of carbon fibers. Macromolecules 2001, 34, 3367–3375. [Google Scholar] [CrossRef]
- Pelckmans, M.; Renders, T.; Van De Vyver, S.; Sels, B.F. Bio-based amines through sustainable heterogeneous catalysis. Green Chem. 2017, 19, 5303–5331. [Google Scholar] [CrossRef]
- Lee, Y.; Kwon, E.E.; Lee, J. Polymers derived from hemicellulosic parts of lignocellulosic biomass. Rev. Environ. Sci. Bio. Technol. 2019, 18, 317–334. [Google Scholar] [CrossRef]
- Lee, Y.; Lin, K.-Y.A.; Kwon, E.E.; Lee, J. Renewable routes to monomeric precursors of nylon 66 and nylon 6 from food waste. J. Clean. Prod. 2019, 227, 624–633. [Google Scholar] [CrossRef]
- Balladur, V.; Fouilloux, P.; De Bellefon, C. Monometallic Ni, Co and Ru, and bimetallic NiCr, NiTi and CoFe Ziegler-Sloan-Lapporte catalysts for the hydrogenation of adiponitrile into hexamethylenediamine: Effect of water and dopants. Appl. Catal. A Gen. 1995, 133, 367–376. [Google Scholar] [CrossRef]
- Alini, S.; Bottino, A.; Capannelli, G.; Carbone, R.; Comite, A.; Vitulli, G. The catalytic hydrogenation of adiponitrile to hexamethylenediamine over a rhodium/alumina catalyst in a three phase slurry reactor. J. Mol. Catal. A Chem. 2003, 206, 363–370. [Google Scholar] [CrossRef]
- Yu, X.; Li, H.; Deng, J.-F. Selective hydrogenation of adiponitrile over a skeletal Ni-P amorphous catalyst (Raney Ni-P) at 1atm pressure. Appl. Catal. A Gen. 2000, 199, 191–198. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y.; Li, H.; Deng, J.F. Gas-phase hydrogenation of adiponitrile with high selectivity to primary amine over supported Ni-B amorphous catalysts. Appl. Catal. A Gen. 2001, 216, 51–58. [Google Scholar] [CrossRef]
- Jia, Z.; Zhen, B.; Han, M.; Wang, C. Liquid phase hydrogenation of adiponitrile over directly reduced Ni/SiO2 catalyst. Catal. Commun. 2016, 73, 80–83. [Google Scholar] [CrossRef]
- Wang, C.; Jia, Z.; Zhen, B.; Han, M. Supported Ni catalyst for liquid phase hydrogenation of adiponitrile to 6-aminocapronitrile and hexamethyenediamine. Molecules 2018, 23, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, H.; Liu, S.; Hao, F.; Liu, P.; You, K.; Liu, D.; Luo, H. Liquid phase hydrogenation of adiponitrile to 6-aminocapronitrile and hexamethylenediamine over potassium doped Ni/α-Al2O3 catalyst. React. Kinet. Mech. Catal. 2013, 109, 475–488. [Google Scholar] [CrossRef]
- Liu, S.; Hao, F.; Liu, P.; Luo, H.; Liao, H. Liquid phase hydrogenation of adiponitrile over amorphous alloy nickel catalyst. Res. Chem. Intermed. 2014, 41, 5879–5887. [Google Scholar] [CrossRef]
- Lv, Y.; Hao, F.; Xiong, S.; Liu, P.; Luo, H. Catalytic properties of nickel/sepiolite promoted with potassium and lanthanum in adiponitrile hydrogenation under mild conditions. RSC Adv. 2016, 6, 60933–60939. [Google Scholar] [CrossRef]
- Lv, Y.; Hao, F.; Liu, P.; Xiong, S.; Luo, H. Liquid phase hydrogenation of adiponitrile over acid-activated sepiolite supported K-La-Ni trimetallic catalysts. React. Kinet. Mech. Catal. 2016, 119, 555–568. [Google Scholar] [CrossRef]
- Lv, Y.; Hao, F.; Liu, P.; Xiong, S.; Luo, H. Improved catalytic performance of acid-activated sepiolite supported nickel and potassium bimetallic catalysts for liquid phase hydrogenation of 1,6-hexanedinitrile. J. Mol. Catal. A Chem. 2017, 426, 15–23. [Google Scholar] [CrossRef]
- Lv, Y.; Li, J.; Feng, S.; Liuabc, P.; Hao, F.; Xiong, W.; Luo, H. Multi-walled carbon nanotubes supported nickel nanoparticles doped with magnesia and copper for adiponitrile hydrogenation with high activity and chemoselectivity under mild conditions. Chem. Eng. J. 2018, 346, 203–216. [Google Scholar] [CrossRef]
- Liu, H.; Guo, Y.; Yu, Y.; Yang, W.; Shen, M.; Liu, X.; Geng, S.; Li, J.; Yu, C.; Yin, Z.; et al. Surface Pd-rich PdAg nanowires as highly efficient catalysts for dehydrogenation of formic acid and subsequent hydrogenation of adiponitrile. J. Mater. Chem. A 2018, 6, 17323–17328. [Google Scholar] [CrossRef]
- Lv, Y.; Cui, H.; Liu, P.; Hao, F.; Xiong, W.; Luo, H. Functionalized multi-walled carbon nanotubes supported Ni-based catalysts for adiponitrile selective hydrogenation to 6-aminohexanenitrile and 1,6-hexanediamine: Switching selectivity with [Bmim] OH. J. Catal. 2019, 372, 330–351. [Google Scholar] [CrossRef]
- Cotting, M.-C.; Gilbert, L.; Leconte, P. Method for Partially Hydrogenating Dinitriles to Aminonitriles. U.S. Patent No. 5,981,790, 1999. [Google Scholar]
- Harper, M.J. Raney Cobalt Catalyst and a Process for Hydrogenating Organic Compounds Using Said Catalyst. U.S. Patent No. 6,156,694, 2000. [Google Scholar]
- Jiang, H.; Lu, S.; Zhang, X.; Dai, W.; Qiao, J. Polymer-supported raney nickel catalysts for sustainable reduction reactions. Molecules 2016, 21, 833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Xu, Y.; Deng, J.-F. Selective hydrogenation of adiponitrile over a Raney Ni-P amorphous catalyst. New J. Chem. 1999, 23, 1059–1061. [Google Scholar] [CrossRef]
- Bartholomew, C.H.; Farrauto, R.J. Fundamentals of Industrial Catalytic Processes; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Bergeret, G.; Gallezot, P. Particle size and dispersion measurements. In Handbook of Heterogeneous Catalysis; Wiley: Weinheim, Germany, 2008; pp. 738–765. [Google Scholar]
- Vannice, M.A. Kinetics of Catalytic Reactions; Springer: New York, NY, USA, 2005. [Google Scholar]
- Fogler, H.S. Elements of chemical reaction engineering. Chem. Eng. Sci. 1987, 42, 2493. [Google Scholar] [CrossRef]
- Davis, M.E.; Davis, R.J. Fundamentals of Chemical Reaction Engineering; McGraw-Hill Higher Education: New York, NY, USA, 2003. [Google Scholar]
- Hoffer, B.W.; Moulijn, J.A. Hydrogenation of dinitriles on Raney-type Ni catalysts: Kinetic and mechanistic aspects. Appl. Catal. A Gen. 2009, 352, 193–201. [Google Scholar] [CrossRef]
- Tichit, D.; Durand, R.; Rolland, A.; Coq, B.; Lopez, J.; Marion, P. Selective half-hydrogenation of adiponitrile to aminocapronitrile on Ni-based catalysts elaborated from lamellar double hydroxide precursors. J. Catal. 2002, 211, 511–520. [Google Scholar] [CrossRef]
- Kim, S.; Tsang, Y.F.; Kwon, E.E.; Lin, K.-Y.A.; Lee, J. Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks. Korean, J. Chem. Eng. 2018, 36, 1–11. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, E.E.; Kim, Y.T.; Jung, S.; Kim, H.J.; Huber, G.W.; Lee, J. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem. 2019, 21, 3715–3743. [Google Scholar] [CrossRef]
Catalyst | BET Surface Area (m2 g−1) | Total Pore Volume a (cm3 g−1) | Average Pore Diameter (nm) | Irreversible H2 Uptake (mmol g−1) | Reversible H2 Uptake (mmol g−1) |
---|---|---|---|---|---|
Raney Ni | 18.4 | 0.029 | 4.8 | 0.173 | 0.122 |
Raney Co | 25.8 | 0.034 | 5.3 | 0.065 | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Lee, S.W.; Kim, H.J.; Kim, Y.T.; Lin, K.-Y.A.; Lee, J. Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts. Appl. Sci. 2020, 10, 7506. https://doi.org/10.3390/app10217506
Lee Y, Lee SW, Kim HJ, Kim YT, Lin K-YA, Lee J. Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts. Applied Sciences. 2020; 10(21):7506. https://doi.org/10.3390/app10217506
Chicago/Turabian StyleLee, Younghyun, Sung Woo Lee, Hyung Ju Kim, Yong Tae Kim, Kun-Yi Andrew Lin, and Jechan Lee. 2020. "Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts" Applied Sciences 10, no. 21: 7506. https://doi.org/10.3390/app10217506