Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Recent trends, Challenges and Applications in Cognitive Computing for Intelligent Systems
Guest editors: Vijayakumar Varadarajan, Piet Kommers, Vincenzo Piuri and V. Subramaniyaswamy
Article type: Research Article
Authors: Nath, Keshaba; * | Dhanalakshmi, Rb | Vijayakumar, V.c | Aremu, Bashiruc | Hemant Kumar Reddy, K.d | Xiao-Zhi, Gaoe
Affiliations: [a] Department of Computer Science and Engineering, National Institute of Technology, Meghalaya, India | [b] KCG College of Technology, Chennai, India | [c] Crown University Int’l Chartered Inc, Argentina | [d] Department of Computer Science and Engineering, National Institute of Science & Technology, Berhampur, India | [e] School of Computing, University of Eastern Finland, Kuopio, Finland
Correspondence: [*] Corresponding author. Keshab Nath, Department of Computer Science and Engineering, National Institute of Technology, Meghalaya, India. E-mail: [email protected].
Abstract: Detection of densely interconnected nodes also called modules or communities in static or dynamic networks has become a key approach to comprehend the topology, functions and organizations of the networks. Over the years, numerous methods have been proposed to detect the accurate community structure in the networks. State-of-the-art approaches only focus on finding non-overlapping and overlapping communities in a network. However, many networks are known to possess a hidden or embedded structure, where communities are recursively grouped into a hierarchical structure. Here, we reinvent such sub-communities within a community, which can be redefined based on nodes similarity. We term those derived communities as hidden or hierarchical communities. In this work, we present a method called Hidden Community based on Neighborhood Similarity Computation (HCNC) to uncover undetected groups of communities that embedded within a community. HCNC can detect hidden communities irrespective of density variation within the community. We define a new similarity measure based on the degree of a node and it’s adjacent nodes degree. We evaluate the efficiency of HCNC by comparing it with several well-known community detectors through various real-world and synthetic networks. Results show that HCNC has better performance in comparison to the candidate community detectors concerning various statistical measures. The most intriguing findings of HCNC is that it became the first research work to report the presence of hidden communities in Les Miserables, Karate and Polbooks networks.
Keywords: Embedded Community, Intrinsic structure, Hidden community, Neighborhood similarity, Community Strength, Social graphs
DOI: 10.3233/JIFS-189150
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8315-8324, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]