Data-Driven Revision of Conditional Norms in Multi-Agent Systems (Extended Abstract)
Data-Driven Revision of Conditional Norms in Multi-Agent Systems (Extended Abstract)
Davide Dell'Anna, Natasha Alechina, Fabiano Dalpiaz, Mehdi Dastani, Brian Logan
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
Journal Track. Pages 6868-6872.
https://doi.org/10.24963/ijcai.2023/773
In multi-agent systems, norm enforcement is a mechanism for steering the behavior of individual agents in order to achieve desired system-level objectives. Due to the dynamics of multi-agent systems, however, it is hard to design norms that guarantee the achievement of the objectives in every operating context. Also, these objectives may change over time, thereby making previously defined norms ineffective. In this paper, we investigate the use of system execution data to automatically synthesise and revise conditional prohibitions with deadlines, a type of norms aimed at preventing agents from exhibiting certain patterns of behaviors. We propose DDNR (Data-Driven Norm Revision), a data-driven approach to norm revision that synthesises revised norms with respect to a data set of traces describing the behavior of the agents in the system. We evaluate DDNR using a state-of-the-art, off-the-shelf urban traffic simulator. The results show that DDNR synthesises revised norms that are significantly more accurate than the original norms in distinguishing adequate and inadequate behaviors for the achievement of the system-level objectives.
Keywords:
Agent-based and Multi-agent Systems: MAS: Normative systems
Agent-based and Multi-agent Systems: MAS: Agent-based simulation and emergence
Agent-based and Multi-agent Systems: MAS: Coordination and cooperation
Agent-based and Multi-agent Systems: MAS: Engineering methods, platforms, languages and tools
Agent-based and Multi-agent Systems: MAS: Formal verification, validation and synthesis
Knowledge Representation and Reasoning: KRR: Learning and reasoning
Machine Learning: ML: Classification