Article contents
Minimal degrees and the jump operator1
Published online by Cambridge University Press: 12 March 2014
Extract
The jump a′ of a degree a is defined to be the largest degree recursively enumerable in a in the upper semilattice of degrees of unsolvability. We examine below some of the ways in which the jump operation is related to the partial ordering of the degrees. Fried berg [3] showed that the equation a = x′ is solvable if and only if a ≥ 0′. Sacks [13] showed that we can find a solution of a = x′ which is ≤ 0′ (and in fact is r.e.) if and only if a ≥ 0′ and is r.e. in 0′. Spector [16] constructed a minimal degree and Sacks [13] constructed one ≤ 0′. So far the only result concerning the relationship between minimal degrees and the jump operator is one due to Yates [17] who showed that there is a minimal predecessor for each non-recursive r.e. degree, and hence that there is a minimal degree with jump 0′. In §1, we obtain an analogue of Friedberg's theorem by constructing a minimal degree solution for a = x′ whenever a ≥ 0′. We incorporate Friedberg5s original number-theoretic device with a complicated sequence of approximations to the nest of trees necessary for the construction of a minimal degree. The proof of Theorem 1 is a revision of an earlier, shorter presentation, and incorporates many additions and modifications suggested by R. Epstein. In §2, we show that any hope for a result analogous to that of Sacks on the jumps of r.e. degrees cannot be fulfilled since 0″ is not the jump of any minimal degree below 0′. We use a characterization of the degrees below 0′ with jump 0″ similar to that found for r.e. degrees with jump 0′ by R. W. Robinson [12]. Finally, in §3, we give a proof that every degree a ≤ 0′ with a′ = 0″ has a minimal predecessor. Yates [17] has already shown that every nonzero r.e. degree has a minimal predecessor, but that there is a nonzero degree ≤ 0′ with no minimal predecessor (see [18]; or for the original unrelativized result see [10] or [4]).
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1973
Footnotes
Financial support for this paper was obtained from the S.R.C. (while the author was a graduate student, at Leicester University and at Manchester University), and also from a Fulbright-Hays travel grant. The material appearing is based on part of the author's doctoral thesis (Leicester University, 1971).
References
REFERENCES
- 34
- Cited by