Elliptic curves and Dedekind domains
HTML articles powered by AMS MathViewer
- by Michael Rosen
- Proc. Amer. Math. Soc. 57 (1976), 197-201
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417190-3
- PDF | Request permission
Abstract:
Some results are obtained on the group of rational points on elliptic curves over infinite algebraic number fields. A certain naturally defined class of Dedekind domains, elliptic Dedekind domains, are described and it is shown that every countable abelian group can be realized as the class group of an elliptic Dedekind domain.References
- Luther Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219–222. MR 195889
- Gerhard Frey and Moshe Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields, Proc. London Math. Soc. (3) 28 (1974), 112–128. MR 337997, DOI 10.1112/plms/s3-28.1.112
- Serge Lang, Elliptic functions, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Amsterdam, 1973. With an appendix by J. Tate. MR 0409362
- Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266. MR 444670, DOI 10.1007/BF01389815
- L. Pontrjagin, The theory of topological commutative groups, Ann. of Math. (2) 35 (1934), no. 2, 361–388. MR 1503168, DOI 10.2307/1968438
- Michael Rosen, $S$-units and $S$-class group in algebraic function fields, J. Algebra 26 (1973), 98–108. MR 327777, DOI 10.1016/0021-8693(73)90036-7
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 0263823
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 197-201
- MSC: Primary 14K15; Secondary 13F05, 14G25
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417190-3
- MathSciNet review: 0417190