iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.20965/jrm.2013.p0586
JRM Vol.25 p.586 (2013) | Fuji Technology Press: academic journal publisher

single-rb.php

JRM Vol.25 No.4 pp. 586-595
doi: 10.20965/jrm.2013.p0586
(2013)

Paper:

A Real-Time Microscopic PIV System Using Frame Straddling High-Frame-Rate Vision

Motofumi Kobatake, Tadayoshi Aoyama, Takeshi Takaki,
and Idaku Ishii

Robotics Laboratory, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

Received:
January 24, 2013
Accepted:
May 21, 2013
Published:
August 20, 2013
Keywords:
lab-on-a-chip (LOC), microscopic flow measurement, particle image velocimetry (PIV), gradientbased optical flow, real-time image processing
Abstract
In this paper, we propose a novel concept of realtime microscopic particle image velocimetry (PIV) for apparent high-speed microchannel flows in lab-on-achip (LOC). We introduce a frame-straddling dualcamera high-speed vision system that synchronizes two different camera inputs for the same camera view with a submicrosecond time delay. In order to improve upper and lower limits of measurable velocity in microchannel flow observation, we designed an improved gradient-based optical flow algorithm that adaptively selects a pair of images in the optimal frame-straddling time between the two camera inputs based on the amplitude of the estimated optical flow. This avoids large image displacement between frames that often generates serious errors in optical flow estimation. Our method is implemented using software on a frame-straddling dual-camera high-speed vision platform that captures real-time video and processes 512 × 512 pixel images at 2000 fps for the two camera heads and controls the frame-straddling time delay between them from 0 to 0.25 ms with 9.9 ns step. Our microscopic PIV system with frame-straddling dualcamera high-speed vision simultaneously estimates the velocity distribution of high-speed microchannel flow at 1 × 108 pixel/s or more. Results of experiments using real microscopic flows on microchannels thousands of µm wide on LOCs verify the performance of the real-time microscopic PIV system we developed.
Cite this article as:
M. Kobatake, T. Aoyama, T. Takaki, and I. Ishii, “A Real-Time Microscopic PIV System Using Frame Straddling High-Frame-Rate Vision,” J. Robot. Mechatron., Vol.25 No.4, pp. 586-595, 2013.
Data files:
References
  1. [1] E. Oosterbroek and A. van den Berg (Eds.), “Lab-on-a-Chip: Miniaturized systems for (bio)chemical analysis and synthesis,” second edition, Elsevier Science, 2003.
  2. [2] R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annual Review of Fluid Mechanics, Vol.23, pp. 261-304, 1991.
  3. [3] M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, “Particle image velocimetry; a practical guide,” 2nd edition, Springer-Verlag, 1998.
  4. [4] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Experiments in Fluids, Vol.25, No.4, pp. 316-319, 1998.
  5. [5] M. M. Mielnik and L. R. Saetran, “Micro particle image velocimetry – an overview,” Experiments in Fluids, Vol.38, No.3, pp. 1-8, 2005.
  6. [6] N. T. Nguyen, “Micromachined flow sensors – a review,” Flow Measurement and Instrumentation, Vol.8, No.1, pp. 7-16, 1997.
  7. [7] G. L. Morini, Y. Yang, H. Chalabi, and M. Lorenzini, “A critical review of the measurement techniques for the analysis of gas microflows through microchannels,” Experimental Thermal and Fluid Science, Vol.35, No.6, pp. 849-865, 2011.
  8. [8] T. S. J. Lammerink, N. R. Tas, M. Elwenspoek, and J. H. J. Fluitman, “Micro-liquid flow sensor,” Sensors and Actuators A: Physical, Vol.37-38, pp. 45-50, 1999.
  9. [9] S. Wu, Q. Lin, Y. Yuen, and Y.-C. Tai, “MEMS flow sensors for nano-fluidic applications,” Sensors and Actuators A: Physical, Vol.89, No.1-2, pp. 152-158, 2001.
  10. [10] T. S. J. Lammerink, F. Dijkstra, Z. Houkes, and J. van Kuijk, “Intelligent gas-mixture sensor,” Sensors and Actuators A: Physical, Vol.46-47, pp. 380-384, 1995.
  11. [11] H. Berthet, J. Jundt, J. Durivault, and B. Mercier, “Time-of-flight thermal flowrate sensor for lab-on-chip applications,” Lab on a Chip, Vol.11, No.2, pp. 215-223, 2011.
  12. [12] R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow sensor,” Sensors and Actuators A: Physical, Vol.77, No.3, pp. 167-177, 1999.
  13. [13] A. Kuoni, R. Holzherr, M. Boillat, and N. F. de Rooij, “Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor,” J. of Micromechanics and Microengineering, Vol.13, No.4, pp. S103-S107, 2003.
  14. [14] P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements,” J. of Microelectromechanical Systems, Vol.6, No.2, pp. 119-125, 1997.
  15. [15] R. Smith, D. Sparks, D. Riley, and N. Najafi, “AMEMS-based Coriolis mass flow sensor for industrial applications,” IEEE Trans. on Industrial Electronics, Vol.56, No.4, pp. 1066-1071, 2009.
  16. [16] N. Svedin, E. Stemme, and G. Stemme, “A static turbine flow meter with a micromachined silicon torque sensor,” J. of Microelectromechanical Systems, Vol.12, No.6, pp. 937-946, 2003.
  17. [17] G. J. Smits, R. J. Roman, and J. H. Lombard, “Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow,” J. of Applied Physiology, Vol.61, No.2, pp. 666-672, 1986.
  18. [18] Y.-L. Lo and C.-H. Chuang, “Fluid velocity measurements in a microchannel performed with two new optical heterodyne microscopes,” Applied Optics, Vol.41, No.31, pp. 6666-6675, 2002.
  19. [19] A. Voigt, C. Bayer, K. Shirai, L. Buttner, and J. Czarske, “Laser Doppler field sensor for high resolution flow velocity imaging without camera,” Applied Optics, Vol.47, No.27, pp. 5028-5040, 2008.
  20. [20] D. Hammer, J. Walther, M. Cuevas, and E. Koch, “Velocity analysis by using Doppler Fourier domain optical coherence tomography with variable reference length,” Proc. of 4th European Conf. on the Int. Federation for Medical and Biological Engineering, pp. 811-815, 2009.
  21. [21] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Experiments in Fluids, Vol.27, pp. 414-419, 1999.
  22. [22] K. V. Sharp and R. J. Adrian, “Transition from laminar to turbulent flow in liquid filled microtubes,” Experiments in Fluids, Vol.36, No.5, pp. 741-747, 2004.
  23. [23] H. Klank, G. Goranovic, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3Dsheathing structure with three-dimensional flow behaviour,” J. of Micromechanics and Microengineering, Vol.12, No.6, pp. 862-869, 2002.
  24. [24] P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-DeVos, T. L. M. Ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. of Biomechanics, Vol.39, No.7, pp. 1191-1200, 2006.
  25. [25] C. D. Meinhart and H. Zhang, “The flow structure inside a microfabricated inkjet printhead,” J. of Microelectromechanical Systems, Vol.9, No.1, pp. 67-75, 2000.
  26. [26] D. P. Hart, “Super-resolution PIV by recursive local-correlation,” J. of Visualization, Vol.3, No.2, pp. 13-22, 2000.
  27. [27] Y. Sugii, S. Nishio, T. Okuno, and K. Okamoto, “A highly accurate iterative PIV technique using a gradient method,”Measurement Science and Technology, Vol.11, No.12, pp. 1666-1673, 2000.
  28. [28] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, Vol.17, pp. 185-203, 1981.
  29. [29] B. Lucas and T. Kanade, “An iterative image registration technique with applications in stereo vision,” Proc. of the DARPA Image Understanding Workshop, pp. 121-130, 1981.
  30. [30] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of Optical Flow Techniques,” Int. J. of Computer Vision, Vol.12, No.1, pp. 32-77, 1984.
  31. [31] H. Liu, T. H. Hong, M. Herman, T. Camus, and R. Chellappa, “Accuracy vs efficiency trade-offs in optical flow algorithms,” Computer Vision and Image Understanding, Vol.72, No.3, pp. 271-286, 1998.
  32. [32] J. L. Martin, A. Zuloaga, C. Cuadrado, J. Lazaro, and U. Bidarte, “Hardware implementation of optical flow constraint equation using FPGAs,” Computer Vision and Image Understanding, Vol.98, pp. 462-490, 2005.
  33. [33] J. Diaz, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota, “FPGAbased real-time optical-flow system,” IEEE Trans. Circuits and Systems for Video Technology, Vol.16, No.2, pp. 274-279, 2006.
  34. [34] Z.Wei, D. J. Lee, and B. E. Nelson, “FPGA-based real-time optical flow algorithm design and implementation,” IEEE J. Multimedia, Vol.2, No.5, pp. 38-45, 2007.
  35. [35] G. Hetsroni, A. Mosyak, E. Pogrebnyak, and L. P. Yarin, “Fluid flow in micro-channels,” Int. J. of Heat and Mass Transfer, Vol.48, pp. 1982-1988, 2005.
  36. [36] D. J. Fleet, “Measurement of Image Velocity,” Kluwer Academic Publishers, Norwell, 1992.
  37. [37] I. Ishii, T. Taniguchi, K. Yamamoto, and T. Takaki, “High-framerate optical flow system,” IEEE Trans. on Circuits and Systems for Video Technology, 2011. doi: 10.1109/TCSVT.2011.2158340.
  38. [38] A. M. Steinberg, J. F. Driscoll, and S. L. Ceccio, “Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV,” Experiments in Fluids, Vol.44, No.6, pp. 985-999, 2008.
  39. [39] S. Bian, S.L. Ceccio, and J.F. Driscoll, “A dual-camera cinematographic PIV measurement system at kilohertz frame rate for high-speed, unsteady flows,” Experiments in Fluids, Vol.48, No.3, pp. 487-495, 2010.
  40. [40] I. Ishii, T. Tatebe, Q. Gu, Y. Moriue, T. Takaki, and K. Tajima, “2000 fps real-time vision system with high-frame-rate video recording,” Proc. of IEEE Conf. on Robotics and Automation, pp. 1536-1541, 2010.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Nov. 30, 2024