Paper:
A Real-Time Microscopic PIV System Using Frame Straddling High-Frame-Rate Vision
Motofumi Kobatake, Tadayoshi Aoyama, Takeshi Takaki,
and Idaku Ishii
Robotics Laboratory, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- [1] E. Oosterbroek and A. van den Berg (Eds.), “Lab-on-a-Chip: Miniaturized systems for (bio)chemical analysis and synthesis,” second edition, Elsevier Science, 2003.
- [2] R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annual Review of Fluid Mechanics, Vol.23, pp. 261-304, 1991.
- [3] M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, “Particle image velocimetry; a practical guide,” 2nd edition, Springer-Verlag, 1998.
- [4] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Experiments in Fluids, Vol.25, No.4, pp. 316-319, 1998.
- [5] M. M. Mielnik and L. R. Saetran, “Micro particle image velocimetry – an overview,” Experiments in Fluids, Vol.38, No.3, pp. 1-8, 2005.
- [6] N. T. Nguyen, “Micromachined flow sensors – a review,” Flow Measurement and Instrumentation, Vol.8, No.1, pp. 7-16, 1997.
- [7] G. L. Morini, Y. Yang, H. Chalabi, and M. Lorenzini, “A critical review of the measurement techniques for the analysis of gas microflows through microchannels,” Experimental Thermal and Fluid Science, Vol.35, No.6, pp. 849-865, 2011.
- [8] T. S. J. Lammerink, N. R. Tas, M. Elwenspoek, and J. H. J. Fluitman, “Micro-liquid flow sensor,” Sensors and Actuators A: Physical, Vol.37-38, pp. 45-50, 1999.
- [9] S. Wu, Q. Lin, Y. Yuen, and Y.-C. Tai, “MEMS flow sensors for nano-fluidic applications,” Sensors and Actuators A: Physical, Vol.89, No.1-2, pp. 152-158, 2001.
- [10] T. S. J. Lammerink, F. Dijkstra, Z. Houkes, and J. van Kuijk, “Intelligent gas-mixture sensor,” Sensors and Actuators A: Physical, Vol.46-47, pp. 380-384, 1995.
- [11] H. Berthet, J. Jundt, J. Durivault, and B. Mercier, “Time-of-flight thermal flowrate sensor for lab-on-chip applications,” Lab on a Chip, Vol.11, No.2, pp. 215-223, 2011.
- [12] R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow sensor,” Sensors and Actuators A: Physical, Vol.77, No.3, pp. 167-177, 1999.
- [13] A. Kuoni, R. Holzherr, M. Boillat, and N. F. de Rooij, “Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor,” J. of Micromechanics and Microengineering, Vol.13, No.4, pp. S103-S107, 2003.
- [14] P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements,” J. of Microelectromechanical Systems, Vol.6, No.2, pp. 119-125, 1997.
- [15] R. Smith, D. Sparks, D. Riley, and N. Najafi, “AMEMS-based Coriolis mass flow sensor for industrial applications,” IEEE Trans. on Industrial Electronics, Vol.56, No.4, pp. 1066-1071, 2009.
- [16] N. Svedin, E. Stemme, and G. Stemme, “A static turbine flow meter with a micromachined silicon torque sensor,” J. of Microelectromechanical Systems, Vol.12, No.6, pp. 937-946, 2003.
- [17] G. J. Smits, R. J. Roman, and J. H. Lombard, “Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow,” J. of Applied Physiology, Vol.61, No.2, pp. 666-672, 1986.
- [18] Y.-L. Lo and C.-H. Chuang, “Fluid velocity measurements in a microchannel performed with two new optical heterodyne microscopes,” Applied Optics, Vol.41, No.31, pp. 6666-6675, 2002.
- [19] A. Voigt, C. Bayer, K. Shirai, L. Buttner, and J. Czarske, “Laser Doppler field sensor for high resolution flow velocity imaging without camera,” Applied Optics, Vol.47, No.27, pp. 5028-5040, 2008.
- [20] D. Hammer, J. Walther, M. Cuevas, and E. Koch, “Velocity analysis by using Doppler Fourier domain optical coherence tomography with variable reference length,” Proc. of 4th European Conf. on the Int. Federation for Medical and Biological Engineering, pp. 811-815, 2009.
- [21] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Experiments in Fluids, Vol.27, pp. 414-419, 1999.
- [22] K. V. Sharp and R. J. Adrian, “Transition from laminar to turbulent flow in liquid filled microtubes,” Experiments in Fluids, Vol.36, No.5, pp. 741-747, 2004.
- [23] H. Klank, G. Goranovic, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3Dsheathing structure with three-dimensional flow behaviour,” J. of Micromechanics and Microengineering, Vol.12, No.6, pp. 862-869, 2002.
- [24] P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-DeVos, T. L. M. Ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. of Biomechanics, Vol.39, No.7, pp. 1191-1200, 2006.
- [25] C. D. Meinhart and H. Zhang, “The flow structure inside a microfabricated inkjet printhead,” J. of Microelectromechanical Systems, Vol.9, No.1, pp. 67-75, 2000.
- [26] D. P. Hart, “Super-resolution PIV by recursive local-correlation,” J. of Visualization, Vol.3, No.2, pp. 13-22, 2000.
- [27] Y. Sugii, S. Nishio, T. Okuno, and K. Okamoto, “A highly accurate iterative PIV technique using a gradient method,”Measurement Science and Technology, Vol.11, No.12, pp. 1666-1673, 2000.
- [28] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, Vol.17, pp. 185-203, 1981.
- [29] B. Lucas and T. Kanade, “An iterative image registration technique with applications in stereo vision,” Proc. of the DARPA Image Understanding Workshop, pp. 121-130, 1981.
- [30] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of Optical Flow Techniques,” Int. J. of Computer Vision, Vol.12, No.1, pp. 32-77, 1984.
- [31] H. Liu, T. H. Hong, M. Herman, T. Camus, and R. Chellappa, “Accuracy vs efficiency trade-offs in optical flow algorithms,” Computer Vision and Image Understanding, Vol.72, No.3, pp. 271-286, 1998.
- [32] J. L. Martin, A. Zuloaga, C. Cuadrado, J. Lazaro, and U. Bidarte, “Hardware implementation of optical flow constraint equation using FPGAs,” Computer Vision and Image Understanding, Vol.98, pp. 462-490, 2005.
- [33] J. Diaz, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota, “FPGAbased real-time optical-flow system,” IEEE Trans. Circuits and Systems for Video Technology, Vol.16, No.2, pp. 274-279, 2006.
- [34] Z.Wei, D. J. Lee, and B. E. Nelson, “FPGA-based real-time optical flow algorithm design and implementation,” IEEE J. Multimedia, Vol.2, No.5, pp. 38-45, 2007.
- [35] G. Hetsroni, A. Mosyak, E. Pogrebnyak, and L. P. Yarin, “Fluid flow in micro-channels,” Int. J. of Heat and Mass Transfer, Vol.48, pp. 1982-1988, 2005.
- [36] D. J. Fleet, “Measurement of Image Velocity,” Kluwer Academic Publishers, Norwell, 1992.
- [37] I. Ishii, T. Taniguchi, K. Yamamoto, and T. Takaki, “High-framerate optical flow system,” IEEE Trans. on Circuits and Systems for Video Technology, 2011. doi: 10.1109/TCSVT.2011.2158340.
- [38] A. M. Steinberg, J. F. Driscoll, and S. L. Ceccio, “Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV,” Experiments in Fluids, Vol.44, No.6, pp. 985-999, 2008.
- [39] S. Bian, S.L. Ceccio, and J.F. Driscoll, “A dual-camera cinematographic PIV measurement system at kilohertz frame rate for high-speed, unsteady flows,” Experiments in Fluids, Vol.48, No.3, pp. 487-495, 2010.
- [40] I. Ishii, T. Tatebe, Q. Gu, Y. Moriue, T. Takaki, and K. Tajima, “2000 fps real-time vision system with high-frame-rate video recording,” Proc. of IEEE Conf. on Robotics and Automation, pp. 1536-1541, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2013 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.