iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.20965/jrm.2009.p0647
JRM Vol.21 p.647 (2009) | Fuji Technology Press: academic journal publisher

single-rb.php

JRM Vol.21 No.5 pp. 647-655
doi: 10.20965/jrm.2009.p0647
(2009)

Paper:

Hybrid Planning for an Air Gap Adjustment System Using Fuzzy Models

Philipp Adelt*, Natascha Esau*, and Alexander Schmidt**

*C-LAB, University of Paderborn, Germany

**Institute for Mechatronics and Design Engineering, University of Paderborn, Germany

Received:
January 30, 2009
Accepted:
May 18, 2009
Published:
October 20, 2009
Keywords:
hybrid planning, continuous effects consideration, mechatronic systems, self-optimization
Abstract
Hybrid planning is an approach to couple continuous domains commonly found in mechatronic systems with discrete planning problems. An ongoing effort to bring self-optimization as a design means of improved overall system operation quality to mechatronic systems is the overall frame that this approach is embedded in. An innovative rail-bound vehicle system propelled by a linear motor employs an Air Gap Adjustment System to control the air gap between the two motor parts and is presented as an application to the concept.
Cite this article as:
P. Adelt, N. Esau, and A. Schmidt, “Hybrid Planning for an Air Gap Adjustment System Using Fuzzy Models,” J. Robot. Mechatron., Vol.21 No.5, pp. 647-655, 2009.
Data files:
References
  1. [1] “Neue Bahntechnik Paderborn,” http://www.railcab.de/.
  2. [2] S. Kambhampati, M. R. Cutkosky, J. M. Tenenbaum, and S. H. Lee, “Integrating general purpose planners and specialized reasoners: Case study of a hybrid planning architecture,” IEEE Transactions on Systems, Man and Cybernetics, Vol.23, No.6, pp. 1503-1518, 1993, source type:Print.
  3. [3] S. Kambhampati, A. D. Mali, and B. Srivastava, “Hybrid planning for partially hierarchical domains,” in AAAI/IAAI, pp. 882-888, 1998.
  4. [4] P. C. Nutt, “Hybrid planning methods,” The Academy of Management Review, Vol.7, No.3, pp. 442-454, Jul 1982.
  5. [5] S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,” (2nd ed) Prentice-Hall, Englewood Cliffs, NJ, 2003.
  6. [6] M. Ghallab and P. Traverso, “Automated Planning: Theory and Practice,” Morgan Kaufmann, 2004.
  7. [7] J. Böcker, A. Schmidt, B. Schulz, and D. Zimmer, “Direktantriebe passend ausgew”ahlt - Elektromagnetische Direktantriebe im Vergleich,” Antriebstechnik, Vol. Nr.2 (spezial), pp. 2-6, Februar 2005.
  8. [8] A. Schmidt and D. Zimmer, “Linear l”auft es schneller - Der Luftspalt bei Linearmotor-getriebenen Schienenfahrzeugen,” Antriebstechnik, Vol. Nr.2 (spezial), pp. 6-10, Februar 2005.
  9. [9] W. Dangelmeier, U. Frank, J. Gausemeier, B. Klöpper, A. Schmidt, and D. Zimmer, “Using active patterns for the conceptual design of self-optimizing systems examplified by an air gap adjustment system,” in ASME 2007 - Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf. (IDETC/CIE), ASME, 2007.
  10. [10] J. Gausemeier, U. Frank, S. Pook, A. Schmidt, and D. Zimmer, “Conceptual design of self-optimizing systems exemplified by a magnetic linear drive,” in ICED07 - 16th Int. Conf. on Engineering Design, August 2007, Paris (Frankreich), 2007.
  11. [11] J. Donoth, J. Gausemeier, S. Pook, A. Schmidt, and D. Zimmer, “Proceeding for the conceptual design of self-optimizing mechatronic systems,” in 10th Int. Design Conf. (DESIGN2008), May 19-22, 2008, Dubrovnik (Croatia).
  12. [12] U. Frank, H. Giese, F. Klein, O. Oberschelp, A. Schmidt, B. Schulz, H. Vöcking, and K. Witting, “Selbstoptimierende Systeme des Maschinenbaus - Definitionen und Konzepte,” ser. HNI-Verlagsschriftenreihe, J. Gausemeier (Ed.), Paderborn, Vol.155, 2004.
  13. [13] P. Adelt, A. Schmidt, N. Esau, L. Kleinjohann, B. Kleinjohann, and M. Rose, “Approximation of environment models for an air gap adjustment system in a hybrid planning context,” IEEE 23rd Int. Symposium on Intelligent Control, 2008.
  14. [14] R. Babuska, “Fuzzy Modeling for Control,” Kluwer Academic Publishers, 1998.
  15. [15] “Xfuzzy home page,” http://www.imse.cnm.es/Xfuzzy/.
  16. [16] B. Kosko, “Fuzzy systems as universal approximators,” IEEE Translations on Computers, Vol.43, No.11, November 1994.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 13, 2024