Paper:
User-Adaptive Reconfigurable Interface for In-Vehicle Information Systems
Sangho Kim, Kosuke Sekiyama, and Toshio Fukuda
Department of Micro-Nano Systems Engineering, Nagoya University
1 Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- [1] National Policy Agency of Japan, “Statistics of Traffic Accident Caused by Operating Car Navigation and Cellular Phone,”
http://www.npa.go.jp/ comment/result/ koutsuukikaku2/honbun/betu06.pdf (in Japanese). - [2] O. Carsten and L. Nilsson, “Safety Assessment of Driver Assistance Systems,” European Journal of Transport and Infrastructure Research, Vol.1, No.3, pp. 225-243, 2001.
- [3] Japan Automobile Manufacturers Association Inc., “Traffic Accident Caused by Operating Car Navigation,”
http://anzen-unten.com/home/hint/c102.html (in Japanese). - [4] Y. Liu, “Comparative Study of the Effects of Auditory, Visual and Multimodality Displays on Driver's Performance in Advanced Traveller Information Systems,” Ergonomics, Vol.44, No.4, pp. 425-442, 2001.
- [5] G. Costagliola, S. Marino, F. Ferrcuci, G. Oliviero, U. Montemurro, and A. Paliott, “Handy — A New Interaction Device for Vehicular Information Systems,” Proc. of Mobile HCI 2004, Vol.3160, No.1, pp. 264-275, 2004.
- [6] G. Burnett, “Ubiquitous Computing within Cars: Designing Controls for Non-visual Use,” Int. Journal of Human-Computer Studies, Vol.55, pp. 521-531, 2001.
- [7] T. Dingus and M. Hulse, “Some Human Factors Design Issues and Recommendations for Automobile Navigation Information Systems,” Transportation Research, Part C, Vol.1, No.2, pp. 119-131, 1993.
- [8] H. Iwasaki, N. Mizuno, K. Hara, and Y. Motomura, “Personalized Recommendation of Content using Bayesian Networks for a Car Navigation System,” Technical Report of IEICE, NC2004-55, pp. 25-30, 2004 (in Japanese).
- [9] J. Van Erp and H. Van Veen, “Vibrotactile In-vehicle Navigation System,” Transportation Research, Par F, Vol.7, pp. 247-256, 2004.
- [10] A. Marcus, “Information Visualization for Advanced Vehicle Displays,” Information Visualization, Vol.1, No.3, pp. 95-102, 2002.
- [11] A. Akabane, J. Murayama, T. Yamaguchi, N. Teranishi, and M. Sato, “Examination on Signal Generating the Sensation of Depressing for a Touch Panel with a Tactile,” Journal of Human Interface, Vol.8, No.4, pp. 591-598, 2006 (in Japanese).
- [12] S. Kim, K. Sekiyama, and T. Fukuda, “Pattern Adaptive and Finger Image-guided Keypad Interface for In-vehicle Information Systems,” Int. Journal on Smart Sensing and Intelligent Systems, Vol.1, No.3, pp. 572-591, 2008.
- [13] L. Rabiner and B. Juang, “Fundamentals of Speech Recognition,” Prentice Hall, Chap.6, 1993.
- [14] L. Rabiner and B. Juang, “An Introduction to Hidden Markov Models,” IEEE Acoust Speech and Signal Process Magazine, Vol.3, No.1, pp. 4-16, 1986.
- [15] L. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proc. of The IEEE, Vol.77, No.2, pp. 257-285, 1989.
- [16] X. Huang, A. Acero, and H. Hon, “Spoken Language Processing: A Guide to Theory, Algorithm, and System Development,” Prentice Hall, Chap.8, 2001.
- [17] A. Marcus, “Vehicle User Interfaces: The Next Revolution,” Interactions, Vol.1, pp. 40-47, 2004.
- [18] M. Shimojo, M. Shinohara, and Y. Fukui, “Human Shape Recognition Performance for 3D Tactile Display,” IEEE Transactions on System, Man and Cybernetics, Part A: Systems and Humans. Vol.29, No.6, pp. 637-644, 1999.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2009 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.