iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.20965/ijat.2015.p0494
IJAT Vol.9 p.494 (2015) | Fuji Technology Press: academic journal publisher

single-au.php

IJAT Vol.9 No.5 pp. 494-501
doi: 10.20965/ijat.2015.p0494
(2015)

Paper:

Moiré Techniques Based on Memory Function of Laser Scanning Microscope for Deformation Measurement at Micron/Submicron Scales

Qinghua Wang*, Hiroshi Tsuda*, Satoshi Kishimoto**, Yoshihisa Tanaka**, and Yutaka Kagawa**,***

*Research Institute for Measurement and Analytical Instrumentation,
National Institute of Advanced Industrial Science and Technology
1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

**Hybrid Materials Unit, National Institute for Materials Science
1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

***Research Center for Advanced Science and Technology, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-0041, Japan

Received:
January 31, 2015
Accepted:
March 30, 2015
Published:
September 5, 2015
Keywords:
laser scanning microscope, moiré method, overlapping, secondary moiré, deformation measurement
Abstract
This paper presents two up-to-date moiré techniques for deformation measurement based on the memory function of a laser scanning microscope (LSM). The two techniques are the LSM overlapping moiré method and the LSM secondary moiré method. The formation principles and the measurement principles of these two methods are presented and compared to those of the traditional scanning moiré method for the first time. The applicable conditions and characteristics of these three moiré techniques are analyzed. Some typical moiré fringes on a strain gauge, carbon fiber reinforced plastics, a polyimide film, and a silicon wafer are illustrated. Our proposed LSM overlapping moiré method and LSM secondary moiré method are able to expand the application range of the LSM in deformation measurement to the micron and the submicron scales.
Cite this article as:
Q. Wang, H. Tsuda, S. Kishimoto, Y. Tanaka, and Y. Kagawa, “Moiré Techniques Based on Memory Function of Laser Scanning Microscope for Deformation Measurement at Micron/Submicron Scales,” Int. J. Automation Technol., Vol.9 No.5, pp. 494-501, 2015.
Data files:
References
  1. [1] R. Weller and B. Shepard, “Displacement Measurement by Mechanical Interferometry,” Proc. Soc. Exp. Stress Analysis, Vol.6, No.1, pp. 35-38, 1948.
  2. [2] B. Han, P. Ifju, and D. Post, “Geometric Moirée methods with enhanced sensitivity by optical/digital fringe multiplication,” Exp. Mech., Vol.33, No.3, pp. 195-200, 1993.
  3. [3] S. Ri, S. Hayashi, S. Ogihara, and H. Tsuda, “Accurate full-field optical displacement measurement technique using a digital camera and repeated patterns,” Opt. Express, Vol.22, No.8, pp. 9693-9706, 2014.
  4. [4] Q. H. Wang, S. Kishimoto, X. F. Jiang, and Y. Yamauchi, “Formation of secondary Moirée patterns for characterization of nanoporous alumina structures in multiple domains with different orientations,” Nanoscale, Vol.5, pp. 2285-2289, 2013.
  5. [5] Q. H. Wang, S. Kishimoto, and Y. Yamauchi, “Three-directional structural characterization of hexagonal packed nanoparticles by hexagonal digital moirée method,” Opt. Lett., Vol.37, pp. 548-550, 2012.
  6. [6] S. Ito, Z. G. Jia, S. Goto, K. Hosobuchi, Y. Shimizu, G. F. He, and W. Gao, “An Electrostatic Force Probe for Surface Profile Measurement in Noncontact Condition,” Int. J. Automation Technol., Vol.7, No.6, pp. 714-719, 2013.
  7. [7] M. A. Haque and M. T. A. Saif, “Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study,” Proc. National Academy of Sciences of the United States of America, Vol.101, No.17, pp. 6335-6340, 2014.
  8. [8] S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep Deformation Measurements by a Moire Method Using Electron-Beam Lithography and Electron-Beam Scan,” Opt. Eng., Vol.32, pp. 522-526, 1993.
  9. [9] S. Kishimoto, Q. H. Wang, H. M. Xie, and Y. Zhao, “Study of the Surface Structure of Butterfly Wings Using the Scanning Electron Microscopic Moire Method,” Appl. Opt., Vol.46, No.28, pp. 7026-7034, 2007.
  10. [10] Q. H. Wang and S. Kishimoto, “Simultaneous analysis of residual stress and stress intensity factor in a resist after UV-nanoimprint lithography based on electron moirée fringes,” J. Micromech. Microeng., Vol.22, No.10, p. 105021, 2012.
  11. [11] H. M. Xie, Q. H. Wang, S. Kishimoto, and F. L. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moire method and its application in the structure of butterfly wing,” J. Appl. Phys., Vol.101, p. 103511, 2007.
  12. [12] B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moirée method in laser scanning confocal microscopy,” Rev. Sci. Instrum., Vol.77, pp. 043101-043105, 2006.
  13. [13] M. J. Tang, H. M. Xie, Q. H. Wang, and J. G. Zhu, “Phase-shifting laser scanning confocal microscopy moirée method and its applications,” Meas. Sci. Technol., Vol.21, No.5, pp. 043101-043105, 2006.
  14. [14] H. Xie, S. Kishimoto, A. Asundi, C. G. Boay, N. Shinya, J. Yu, and B. K. Ngoi, “In-plane deformation measurement using the atomic force microscope moirée method,” Nanotechnology, Vol.11, No.1, p. 24, 2000.
  15. [15] F. Su, J. Wei, and Y. C. Liu, “Removal of AFM moirée measurement errors due to non-linear scan and creep of probe,” Nanotechnology, Vol.16, No.9, p. 1681, 2005.
  16. [16] G. Herrera-Granados, K. Ashida, I. Ogura, Y. Okazaki, N. Morita, H. Hidai, S. Matsusaka, and A. Chiba, “Development of a Non-Rigid Micro-Scale Cutting Mechanism Measuring the Cutting Force Using an Optical Lever,” Int. J. Automation Technol., Vol.8, No.6, pp. 903-911, 2014.
  17. [17] Q. H. Wang, S. Kishimoto, Y. Tanaka, and Y. Kagawa, “Micro/submicro grating fabrication on metals for deformation measurement based on ultraviolet nanoimprint lithography,” Opt. Lasers Eng., Vol.51, No.7, pp. 944-948, 2013.
  18. [18] A. Weigel, D. Schild, and A. Zeug, “Resolution in the ApoTome and the confocal laser scanning microscope: comparison,” J. Biomed. Opt., Vol.14, No.1, p. 014022, 2009.
  19. [19] R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, and C. V. C. Bouten, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol., Vol.11, No.3-4, pp. 461-473, 2012.
  20. [20] K. Kishida, T. Nakamura, H. Aoyama, N. Matsushita, and A. Ushimaru, “Basic study on laser forming of curved surfaces with simulation,” Int. J. Automation Technol., Vol.7, No.1, pp. 24-29, 2013.
  21. [21] Y. Kimura, A. Matsubara, and Y. Koike, “Analysis of Measurement Errors of a Diffuse-Reflection-Type Laser Displacement Sensor for Profile Measurement,” Int. J. Automation Technol., Vol.6, No.6, pp. 724-727, 2012.
  22. [22] Q. H. Wang, S. Kishimoto, Y. Tanaka, K. Naito, and Y. Kagawa, “Generation of overlap-scanning laser microscope moirée fringes using micro grids for in-situ deformation measurement,” Proc. 2013 Annual Conference of The Japan Society of Mechanical Engineers, J112014, No.13-1, pp. 1-4, Okayama, Japan, Sep. 2013.
  23. [23] Q. H. Wang, H. Tsuda, S. Kishimoto, Y. Tanaka, and Y. Kagawa, “Generation of secondary moirée fringes under a laser scanning microscope for deformation measurement without the effect of scanning distortion,” Proc. 2014 JSEM Annual Conference on Experimental Mechanics, B105, No.14, pp. 84-89, Hyougoken, Japan, Aug. 2014.
  24. [24] Y. J. Li, H. M. Xie, P. W. Chen, and Q. M. Zhang, “Theoretical analysis of moire fringe multiplication under a scanning electron microscope,” Meas. Sci. Technol., Vol.22, No.2, p. 025301, 2011.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 13, 2024