Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers
Lung-Hao Lee, Man-Chen Hung, Chien-Huan Lu, Chang-Hao Chen, Po-Lei Lee, Kuo-Kai Shyu
Abstract
This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.- Anthology ID:
- 2021.smm4h-1.18
- Volume:
- Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task
- Month:
- June
- Year:
- 2021
- Address:
- Mexico City, Mexico
- Editors:
- Arjun Magge, Ari Klein, Antonio Miranda-Escalada, Mohammed Ali Al-garadi, Ilseyar Alimova, Zulfat Miftahutdinov, Eulalia Farre-Maduell, Salvador Lima Lopez, Ivan Flores, Karen O'Connor, Davy Weissenbacher, Elena Tutubalina, Abeed Sarker, Juan M Banda, Martin Krallinger, Graciela Gonzalez-Hernandez
- Venue:
- SMM4H
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 98–101
- Language:
- URL:
- https://aclanthology.org/2021.smm4h-1.18
- DOI:
- 10.18653/v1/2021.smm4h-1.18
- Bibkey:
- Cite (ACL):
- Lung-Hao Lee, Man-Chen Hung, Chien-Huan Lu, Chang-Hao Chen, Po-Lei Lee, and Kuo-Kai Shyu. 2021. Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers. In Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task, pages 98–101, Mexico City, Mexico. Association for Computational Linguistics.
- Cite (Informal):
- Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers (Lee et al., SMM4H 2021)
- Copy Citation:
- PDF:
- https://aclanthology.org/2021.smm4h-1.18.pdf
Export citation
@inproceedings{lee-etal-2021-classification, title = "Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential {COVID}-19 Cases Using {R}o{BERT}a Transformers", author = "Lee, Lung-Hao and Hung, Man-Chen and Lu, Chien-Huan and Chen, Chang-Hao and Lee, Po-Lei and Shyu, Kuo-Kai", editor = "Magge, Arjun and Klein, Ari and Miranda-Escalada, Antonio and Al-garadi, Mohammed Ali and Alimova, Ilseyar and Miftahutdinov, Zulfat and Farre-Maduell, Eulalia and Lopez, Salvador Lima and Flores, Ivan and O'Connor, Karen and Weissenbacher, Davy and Tutubalina, Elena and Sarker, Abeed and Banda, Juan M and Krallinger, Martin and Gonzalez-Hernandez, Graciela", booktitle = "Proceedings of the Sixth Social Media Mining for Health ({\#}SMM4H) Workshop and Shared Task", month = jun, year = "2021", address = "Mexico City, Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.smm4h-1.18", doi = "10.18653/v1/2021.smm4h-1.18", pages = "98--101", abstract = "This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="lee-etal-2021-classification"> <titleInfo> <title>Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers</title> </titleInfo> <name type="personal"> <namePart type="given">Lung-Hao</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Man-Chen</namePart> <namePart type="family">Hung</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chien-Huan</namePart> <namePart type="family">Lu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chang-Hao</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Po-Lei</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kuo-Kai</namePart> <namePart type="family">Shyu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021-06</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task</title> </titleInfo> <name type="personal"> <namePart type="given">Arjun</namePart> <namePart type="family">Magge</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ari</namePart> <namePart type="family">Klein</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="family">Miranda-Escalada</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mohammed</namePart> <namePart type="given">Ali</namePart> <namePart type="family">Al-garadi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ilseyar</namePart> <namePart type="family">Alimova</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zulfat</namePart> <namePart type="family">Miftahutdinov</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eulalia</namePart> <namePart type="family">Farre-Maduell</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Salvador</namePart> <namePart type="given">Lima</namePart> <namePart type="family">Lopez</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ivan</namePart> <namePart type="family">Flores</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karen</namePart> <namePart type="family">O’Connor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Davy</namePart> <namePart type="family">Weissenbacher</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elena</namePart> <namePart type="family">Tutubalina</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Abeed</namePart> <namePart type="family">Sarker</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Juan</namePart> <namePart type="given">M</namePart> <namePart type="family">Banda</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Krallinger</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Graciela</namePart> <namePart type="family">Gonzalez-Hernandez</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Mexico City, Mexico</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.</abstract> <identifier type="citekey">lee-etal-2021-classification</identifier> <identifier type="doi">10.18653/v1/2021.smm4h-1.18</identifier> <location> <url>https://aclanthology.org/2021.smm4h-1.18</url> </location> <part> <date>2021-06</date> <extent unit="page"> <start>98</start> <end>101</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers %A Lee, Lung-Hao %A Hung, Man-Chen %A Lu, Chien-Huan %A Chen, Chang-Hao %A Lee, Po-Lei %A Shyu, Kuo-Kai %Y Magge, Arjun %Y Klein, Ari %Y Miranda-Escalada, Antonio %Y Al-garadi, Mohammed Ali %Y Alimova, Ilseyar %Y Miftahutdinov, Zulfat %Y Farre-Maduell, Eulalia %Y Lopez, Salvador Lima %Y Flores, Ivan %Y O’Connor, Karen %Y Weissenbacher, Davy %Y Tutubalina, Elena %Y Sarker, Abeed %Y Banda, Juan M. %Y Krallinger, Martin %Y Gonzalez-Hernandez, Graciela %S Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task %D 2021 %8 June %I Association for Computational Linguistics %C Mexico City, Mexico %F lee-etal-2021-classification %X This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745. %R 10.18653/v1/2021.smm4h-1.18 %U https://aclanthology.org/2021.smm4h-1.18 %U https://doi.org/10.18653/v1/2021.smm4h-1.18 %P 98-101
Markdown (Informal)
[Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers](https://aclanthology.org/2021.smm4h-1.18) (Lee et al., SMM4H 2021)
- Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers (Lee et al., SMM4H 2021)
ACL
- Lung-Hao Lee, Man-Chen Hung, Chien-Huan Lu, Chang-Hao Chen, Po-Lei Lee, and Kuo-Kai Shyu. 2021. Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers. In Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task, pages 98–101, Mexico City, Mexico. Association for Computational Linguistics.