Abstract
We analyze the effects of possible noise sources on a fence structure micromachined capacitive accelerometer system by modeling and simulation to improve its performance. Simulation results show that a mismatch between the two initial sensing capacitors of the accelerometer or a mismatch between the two capacitance-voltage conversion circuits has a great effect on the output noise floor. When there is a serious mismatch, the noise induced by a sinusoidal carrier is the major noise source. When there is no or only a slight mismatch, the differential capacitance-voltage conversion circuits become the main noise source. The simulation results were validated by experiments and some effective approaches are proposed to improve the system resolution.
Similar content being viewed by others
References
Beeby, S., Ensell, G., Kraft, M., Neil, W., 2004. MEMS Mechanical Sensors. Artech House, Boston, USA, p.39–56.
Clark, W.A., 1997. Micromachined Vibratory Rate Gyroscopes. PhD Thesis, University of California, Berkeley, USA, p.101–104.
Couch, L.W., 1983. Digital and Analog Communication Systems. Prentice Hall, Inc., New Jersey, USA, p.416–594.
Gopel, W., Hesse, J., Zemel, J., 1994. Sensors: a Comprehensive Survey, Vol. 7, Mechanical Sensors. Wiley-VCH, Wienheim.
Izham, Z., Ward, M.C.L., 2004. Dynamic simulation of a resonant MEMS magnetometer in Simulink. Sens. Actuat. A, 115(2–3):392–400. [doi:10.1016/j.sna.2004.04.055]
Kulah, H., Najafi, K., 2002. A Low Noise Switched-Capacitor Interface Circuit for Sub-micro Gravity Resolution Micromachined Accelerometers. Proc. ESSCIRC, p.635–638.
Leland, R.P., 2005. Mechanical-thermal noise in MEMS gyroscopes. IEEE Sens. J., 5(3):493–500. [doi:10.1109/JSEN. 2005.844538]
Lewis, C.P., Kraft, M., 1996. Simulation of a Micromachined Digital Accelerometer in Simulink and PSPICE. UKACC Int. Conf. on Control, p.205–209. [doi:10.1049/cp:19960 553]
Mohite, S., Patil, N., Pratap, R., 2006. Design, modeling and simulation of vibratory micromachined gyroscopes. J. Phys., 34:757–763. [doi:10.1088/1742-6596/34/1/125]
Peitgen, H., Saupe, D., 1982. The Science of Fractal Images. Springer-Verlag, New York, USA, p.93–94.
Petkov, V.P., Boser, B.E., 2004. Capacitive Interfaces for MEMS. In: Baltes, H., Brand, O., Fedder, G.K., et al. (Eds.), Advanced Micro and Nanosystems. Wiley-VCH, Weinheim, p.49–92.
Wu, J., Fedder, G.K., Carley, L.R., 2004. A low-noise low-offset capacitive sensing amplifier for a 50μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J. Sol.-State Circ., 39(5):722–730. [doi:10.1109/JSSC.2004. 826329]
Xue, W., Wang, J., Cui, T., 2005. Modeling and design of polymer-based tunneling accelerometers by ANSYS/MATLAB. IEEE/ASME Trans. Mechatr., 10(4):468–472. [doi:10.1109/TMECH.2005.852451]
Yazdi, N., Ayazi, F., Najafi, K., 1998. Micromachined inertial sensors. Proc. IEEE, 86(8):1640–1659. [doi:10.1109/5. 704269]
Yun, W., 1992. A Surface Micromachined Accelerometer with Integrated CMOS Detection Circuitry. PhD Thesis, University of California, Berkeley, USA.
Zhang, X., Zheng, X.D., Zheng, Y.M., Luo, S.J., Wang, Y.L., Jin, Z.H., 2008. A new modeling method of MEMS system’s noise. Chin. J. Sens. Actuat., 21(3):498–500 (in Chinese).
Zheng, X.D., Jin, Z.H., Wang, Y.L., Lin, W.J., Zhou, X.Q., 2009. An in-plane low-noise accelerometer fabricated with an improved process flow. J. Zhejiang Univ.-Sci. A, 10(10):1413–1420. [doi:10.1631/jzus.A0820757]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project (No. NCET-06-0514) supported by the Program for New Century Excellent Talents in University of China
Rights and permissions
About this article
Cite this article
Zhang, X., Wang, H., Zheng, Xd. et al. Modeling and noise analysis of a fence structure micromachined capacitive accelerometer system. J. Zhejiang Univ. - Sci. C 11, 1009–1015 (2010). https://doi.org/10.1631/jzus.C0910757
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C0910757