iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1631/jzus.C0910757
Modeling and noise analysis of a fence structure micromachined capacitive accelerometer system | Frontiers of Information Technology & Electronic Engineering Skip to main content
Log in

Modeling and noise analysis of a fence structure micromachined capacitive accelerometer system

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We analyze the effects of possible noise sources on a fence structure micromachined capacitive accelerometer system by modeling and simulation to improve its performance. Simulation results show that a mismatch between the two initial sensing capacitors of the accelerometer or a mismatch between the two capacitance-voltage conversion circuits has a great effect on the output noise floor. When there is a serious mismatch, the noise induced by a sinusoidal carrier is the major noise source. When there is no or only a slight mismatch, the differential capacitance-voltage conversion circuits become the main noise source. The simulation results were validated by experiments and some effective approaches are proposed to improve the system resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beeby, S., Ensell, G., Kraft, M., Neil, W., 2004. MEMS Mechanical Sensors. Artech House, Boston, USA, p.39–56.

    Google Scholar 

  • Clark, W.A., 1997. Micromachined Vibratory Rate Gyroscopes. PhD Thesis, University of California, Berkeley, USA, p.101–104.

    Google Scholar 

  • Couch, L.W., 1983. Digital and Analog Communication Systems. Prentice Hall, Inc., New Jersey, USA, p.416–594.

    Google Scholar 

  • Gopel, W., Hesse, J., Zemel, J., 1994. Sensors: a Comprehensive Survey, Vol. 7, Mechanical Sensors. Wiley-VCH, Wienheim.

    Google Scholar 

  • Izham, Z., Ward, M.C.L., 2004. Dynamic simulation of a resonant MEMS magnetometer in Simulink. Sens. Actuat. A, 115(2–3):392–400. [doi:10.1016/j.sna.2004.04.055]

    Article  Google Scholar 

  • Kulah, H., Najafi, K., 2002. A Low Noise Switched-Capacitor Interface Circuit for Sub-micro Gravity Resolution Micromachined Accelerometers. Proc. ESSCIRC, p.635–638.

  • Leland, R.P., 2005. Mechanical-thermal noise in MEMS gyroscopes. IEEE Sens. J., 5(3):493–500. [doi:10.1109/JSEN. 2005.844538]

    Article  Google Scholar 

  • Lewis, C.P., Kraft, M., 1996. Simulation of a Micromachined Digital Accelerometer in Simulink and PSPICE. UKACC Int. Conf. on Control, p.205–209. [doi:10.1049/cp:19960 553]

  • Mohite, S., Patil, N., Pratap, R., 2006. Design, modeling and simulation of vibratory micromachined gyroscopes. J. Phys., 34:757–763. [doi:10.1088/1742-6596/34/1/125]

    Google Scholar 

  • Peitgen, H., Saupe, D., 1982. The Science of Fractal Images. Springer-Verlag, New York, USA, p.93–94.

    Google Scholar 

  • Petkov, V.P., Boser, B.E., 2004. Capacitive Interfaces for MEMS. In: Baltes, H., Brand, O., Fedder, G.K., et al. (Eds.), Advanced Micro and Nanosystems. Wiley-VCH, Weinheim, p.49–92.

    Google Scholar 

  • Wu, J., Fedder, G.K., Carley, L.R., 2004. A low-noise low-offset capacitive sensing amplifier for a 50μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J. Sol.-State Circ., 39(5):722–730. [doi:10.1109/JSSC.2004. 826329]

    Article  Google Scholar 

  • Xue, W., Wang, J., Cui, T., 2005. Modeling and design of polymer-based tunneling accelerometers by ANSYS/MATLAB. IEEE/ASME Trans. Mechatr., 10(4):468–472. [doi:10.1109/TMECH.2005.852451]

    Article  Google Scholar 

  • Yazdi, N., Ayazi, F., Najafi, K., 1998. Micromachined inertial sensors. Proc. IEEE, 86(8):1640–1659. [doi:10.1109/5. 704269]

    Article  Google Scholar 

  • Yun, W., 1992. A Surface Micromachined Accelerometer with Integrated CMOS Detection Circuitry. PhD Thesis, University of California, Berkeley, USA.

    Google Scholar 

  • Zhang, X., Zheng, X.D., Zheng, Y.M., Luo, S.J., Wang, Y.L., Jin, Z.H., 2008. A new modeling method of MEMS system’s noise. Chin. J. Sens. Actuat., 21(3):498–500 (in Chinese).

    Google Scholar 

  • Zheng, X.D., Jin, Z.H., Wang, Y.L., Lin, W.J., Zhou, X.Q., 2009. An in-plane low-noise accelerometer fabricated with an improved process flow. J. Zhejiang Univ.-Sci. A, 10(10):1413–1420. [doi:10.1631/jzus.A0820757]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhang.

Additional information

Project (No. NCET-06-0514) supported by the Program for New Century Excellent Talents in University of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wang, H., Zheng, Xd. et al. Modeling and noise analysis of a fence structure micromachined capacitive accelerometer system. J. Zhejiang Univ. - Sci. C 11, 1009–1015 (2010). https://doi.org/10.1631/jzus.C0910757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910757

Key words

CLC number

Navigation