iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1631/jzus.C0910182
Image compression based on spatial redundancy removal and image inpainting | Frontiers of Information Technology & Electronic Engineering Skip to main content
Log in

Image compression based on spatial redundancy removal and image inpainting

  • Image Processing
  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We present an algorithm for image compression based on an image inpainting method. First the image regions that can be accurately recovered are located. Then, to reduce the data, information of such regions is removed. The remaining data besides essential details for recovering the removed regions are encoded to produce output data. At the decoder, an inpainting method is applied to retrieve removed regions using information extracted at the encoder. The image inpainting technique utilizes partial differential equations (PDEs) for recovering information. It is designed to achieve high performance in terms of image compression criteria. This algorithm was examined for various images. A high compression ratio of 1:40 was achieved at an acceptable quality. Experimental results showed attainable visible quality improvement at a high compression ratio compared with JPEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertalmio, M., 2006. Strong-continuation, contrast-invariant inpainting with a third-order optimal PDE. IEEE Trans. Image Process., 15(7):1934–1938. [doi:10.1109/TIP.2006.877067]

    Article  Google Scholar 

  • Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C., 2000. Image Inpainting. Proc. Int. Conf. on Computer Graphics and Interactive Techniques, p.417–424. [doi:10.1145/344779.344972]

  • Bertalmio, M., Bertozzi, A.L., Sapiro, G., 2001. Navier-Stokes, Fluid Dynamics, and Image and Video Inpainting. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1:355–362. [doi:10.1109/CVPR.2001.990497]

    Google Scholar 

  • Briggs, W.L., Henson, V.E., McCormick, S.F., 2000. A Multi-Grid Tutorial (2nd Ed.). Society for Industrial and Applied Mathematics (SIAM), Philadelphia, p.1–85.

    Google Scholar 

  • Chan, T.F., Shen, J., 2005a. Image Processing and Analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, p.277–279.

    MATH  Google Scholar 

  • Chan, T.F., Shen, J., 2005b. Variational image inpainting. Commun. Pure Appl. Math., 58(5):579–619. [doi:10.1002/cpa.20075]

    Article  MATH  MathSciNet  Google Scholar 

  • Criminisi, A., Perez, P., Toyama, K., 2004. Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process., 13(9):1200–1212. [doi:10.1109/TIP.2004.833105]

    Article  Google Scholar 

  • Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaey, A., 2008. Image compression with anisotropic diffusion. J. Math. Imag. Vis., 31(2–3):255–269. [doi:10.1007/s10851-008-0087-0]

    Google Scholar 

  • Grossauer, H., 2004. A combined PDE and texture synthesis approach to inpainting. LNCS, 3022:214–224. [doi:10.1007/b97866]

    Google Scholar 

  • Höntsch, I., Karam, L.J., 2000. Locally adaptive perceptual image coding. IEEE Trans. Image Process., 9(9):1472–1483. [doi:10.1109/83.862622]

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, D., Sun, X.Y., Wu, F., Li, S.P., Zhang, Y.Q., 2007. Image compression with edge-based inpainting. IEEE Trans. Circ. Syst. Video Technol., 17(10):1273–1287. [doi:10.1109/TCSVT.2007.903663]

    Article  Google Scholar 

  • Malo, J., Epifanio, I., Navarro, R., Simoncelli, E.P., 2006. Nonlinear image representation for efficient perceptual coding. IEEE Tran. Image Process., 15(1):68–80. [doi:10.1109/TIP.2005.860325]

    Article  Google Scholar 

  • Patwardhan, K.A., Sapiro, G., Bertalmio, M., 2005. Video Inpainting of Occluding and Occluded Objects. IEEE Int. Conf. on Image Processing, 2:69–72. [doi:10.1109/ICIP.2005.1529993]

    Google Scholar 

  • Pennebaker, W.B., Mitchell, J.L., 1992. JPEG: Still Image Data Compression Standard. Kluwer Academic Publishers, Norwell, MA, USA.

    Google Scholar 

  • Perona, P., Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12(7):629–639. [doi:10.1109/34.56205]

    Article  Google Scholar 

  • Rane, S.D., Sapiro, G., Bertalmio, M., 2003. Structure and texture filling-in of missing image blocks in wireless transmission and compression applications. IEEE Trans. Image Process., 12(3):296–303. [doi:10.1109/TIP.2002.804264]

    Article  MathSciNet  Google Scholar 

  • Shen, J., Chan, T.F., 2002. Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math, 62(3):1019–1043. [doi:10.1137/S0036139900368844]

    Article  MATH  MathSciNet  Google Scholar 

  • Tai, X.C., Osher, S., Holm, R., 2006. Image Inpainting Using a TV-Stokes Equation. Image Processing Based on Partial Differential Equations, p.3–22. [doi:10.1007/978-3-540-33267-1_1]

  • Taubman, D.S., Marcellin, M.W., 2002. JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, Norwell, MA, USA.

    Google Scholar 

  • Wang, Z., Bovik, A.C., 2009. Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag., 26(1):98–117. [doi:10.1109/MSP.2008.930649]

    Article  Google Scholar 

  • Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13(4):600–612. [doi:10.1109/TIP.2003.819861]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Helfroush.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastani, V., Helfroush, M.S. & Kasiri, K. Image compression based on spatial redundancy removal and image inpainting. J. Zhejiang Univ. - Sci. C 11, 92–100 (2010). https://doi.org/10.1631/jzus.C0910182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910182

Key words

CLC number

Navigation