iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1631/FITEE.1800611
Leader-following consensus of second-order nonlinear multi-agent systems subject to disturbances | Frontiers of Information Technology & Electronic Engineering Skip to main content
Log in

Leader-following consensus of second-order nonlinear multi-agent systems subject to disturbances

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In this study, we investigate the leader-following consensus problem of a class of heterogeneous secondorder nonlinear multi-agent systems subject to disturbances. In particular, the nonlinear systems contain uncertainties that can be linearly parameterized. We propose a class of novel distributed control laws, which depends on the relative state of the system and thus can be implemented even when no communication among agents exists. By Barbalat’s lemma, we demonstrate that consensus of the second-order nonlinear multi-agent system can be achieved by the proposed distributed control law. The effectiveness of the main result is verified by its application to consensus control of a group of Van der Pol oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng L, Hou ZG, Tan M, et al., 2010. Neural-network-based adaptive leader-following control for multiagent systems with uncertainties. IEEE Trans Neur Netw, 21(8): 1351–1358. https://doi.org/10.1109/TNN.2010.2050601

    Article  Google Scholar 

  • Deng F, Guan S, Yue X, et al., 2017. Energy-based sound source localization with low power consumption in wireless sensor networks. IEEE Trans Ind Electron, 64(6): 4894–4902. https://doi.org/10.1109/TIE.2017.2652394

    Article  Google Scholar 

  • Godsil C, Royle G, 2001. Algebraic Graph Theory. Springer Berlin Heidelberg. https://doi.org/10.1007/978-1-4613-0163-9

    Google Scholar 

  • Hu JP, Hong YG, 2007. Leader-following coordination of multi-agent systems with coupling time delays. Phys A, 374(2):853–863. https://doi.org/10.1016/j.physa.2006.08.015

    Article  Google Scholar 

  • Jadbabaie A, Lin J, Morse AS, 2003. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Contr, 48(6):988–1001. https://doi.org/10.1109/TAC.2003.812781

    Article  MathSciNet  MATH  Google Scholar 

  • Liu W, Huang J, 2016. Leader-following consensus for uncertain second-order nonlinear multi-agent systems. Contr Theory Technol, 14(4):279–286. https://doi.org/10.1007/s11768-016-6082-x

    Article  MathSciNet  MATH  Google Scholar 

  • Lu MB, Liu L, 2017. Consensus of linear multi-agent systems subject to communication delays and switching networks. Int J Rob Nonl Contr, 27(9):1379–1396. https://doi.org/10.1002/rnc.3750

    MathSciNet  MATH  Google Scholar 

  • Lu MB, Liu L, 2018. Robust consensus of a class of heterogeneous nonlinear uncertain multi-agent systems subject to communication constraints. Chinese Control and Decision Conf, p.74–81. https://doi.org/10.1109/CCDC.2018.8407109

    Google Scholar 

  • Meng ZY, Lin ZL, Ren W, 2013. Robust cooperative tracking for multiple non-identical second-order nonlinear systems. Automatica, 49(8):2363–2372. https://doi.org/10.1016/j.automatica.2013.04.040

    Article  MathSciNet  MATH  Google Scholar 

  • Moreau L, 2004. Stability of continuous-time distributed consensus algorithms. Proc 43rd IEEE Conf on Decision and Control, p.3998–4003. https://doi.org/10.1109/CDC.2004.1429377

    Google Scholar 

  • Olfati-Saber R, 2006. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Contr, 51(3):401–420. https://doi.org/10.1109/TAC.2005.864190

    Article  MathSciNet  MATH  Google Scholar 

  • Olfati-Saber R, Murray RM, 2004. Consensus problems in networks of agents with switching topology and timedelays. IEEE Trans Autom Contr, 49(9):1520–1533. https://doi.org/10.1109/TAC.2004.834113

    Article  MATH  Google Scholar 

  • Ren W, Beard RW, 2005. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Contr, 50(5):655–661. https://doi.org/10.1109/TAC.2005.846556

    Article  MathSciNet  MATH  Google Scholar 

  • Slotine JJE, Li WP, 1991. Applied Nonlinear Control. Prentice-Hall.

    Google Scholar 

  • Song Q, Cao JD, Yu WW, 2010. Second-order leaderfollowing consensus of nonlinear multi-agent systems via pinning control. Syst Contr Lett, 59(9):553–562. https://doi.org/10.1016/j.sysconle.2010.06.016

    Article  MATH  Google Scholar 

  • Su YF, 2015. Cooperative global output regulation of secondorder nonlinear multi-agent systems with unknown control direction. IEEE Trans Autom Contr, 60(12):3275–3280. https://doi.org/10.1109/TAC.2015.2426273

    Article  MATH  Google Scholar 

  • Su YF, Huang J, 2012. Cooperative output regulation of linear multi-agent systems. IEEE Trans Autom Contr, 57(4):1062–1066. https://doi.org/10.1109/TAC.2011.2169618

    Article  MathSciNet  MATH  Google Scholar 

  • Su YF, Huang J, 2013. Cooperative global output regulation of heterogeneous second-order nonlinear uncertain multi-agent systems. Automatica, 49(11):3345–3350. https://doi.org/10.1016/j.automatica.2013.08.001

    Article  MathSciNet  MATH  Google Scholar 

  • Tuna SE, 2008. LQR-based coupling gain for synchronization of linear systems. https://arxiv.org/abs/0801.3390

    Google Scholar 

  • Wang CR, Ji HB, 2015. Robust consensus tracking for a class of heterogeneous second-order nonlinear multiagent systems. Int J Rob Nonl Contr, 25(17):3367–3383. https://doi.org/10.1002/rnc.3269

    Article  MATH  Google Scholar 

  • Wieland P, Sepulchre R, Allgöwer F, 2011. An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 47(5):1068–1074. https://doi.org/10.1016/j.automatica.2011.01.081

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Liu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61773327), the Research Grants Council of the Hong Kong Special Administrative Region of China under Project CityU/11274916, and Projects of Major International (Regional) Joint Research Program of the National Natural Science Foundation of China (No. 61720106011)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, MB., Liu, L. Leader-following consensus of second-order nonlinear multi-agent systems subject to disturbances. Frontiers Inf Technol Electronic Eng 20, 88–94 (2019). https://doi.org/10.1631/FITEE.1800611

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1800611

Key words

CLC number

Navigation