iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1587/transinf.2016EDL8188
Adaptive Updating Probabilistic Model for Visual Tracking
IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Adaptive Updating Probabilistic Model for Visual Tracking
Kai FANGShuoyan LIUChunjie XUHao XUE
Author information
JOURNAL FREE ACCESS

2017 Volume E100.D Issue 4 Pages 914-917

Details
Abstract

In this paper, an adaptive updating probabilistic model is proposed to track an object in real-world environment that includes motion blur, illumination changes, pose variations, and occlusions. This model adaptively updates tracker with the searching and updating process. The searching process focuses on how to learn appropriate tracker and updating process aims to correct it as a robust and efficient tracker in unconstrained real-world environments. Specifically, according to various changes in an object's appearance and recent probability matrix (TPM), tracker probability is achieved in Expectation-Maximization (EM) manner. When the tracking in each frame is completed, the estimated object's state is obtained and then fed into update current TPM and tracker probability via running EM in a similar manner. The highest tracker probability denotes the object location in every frame. The experimental result demonstrates that our method tracks targets accurately and robustly in the real-world tracking environments.

Content from these authors
© 2017 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top