Engineering Human Stigmergy
Keywords:
Human stigmergy, virtual pheromones, pheromone maps, intelligent transportation systems, stigmergic shopping, stigmergic learningAbstract
Discovered in the context of a research about insects, stigmergy — the indirect coordination mechanism that allows ant colonies to achieve intelligent behavior — has been extensively studied with the aim to create artificial, ant-like agents. Although stigmergic behavior has been also identified in human collectivities, there are relatively few reports about technological solutions that facilitate the emergence of such interactions between people.
This paper proposes the concept of virtual pheromones, defined as engrams created by the agents not in the environment, but in a representation thereof — a map, and outlines several use cases, wherein pheromones embedded in maps are the key element for inducing stigmergic behavior in human multi-agent systems.
Without proposing a theoretic generalization, this paper aims to emphasize the broad range of possible technological applications of human stigmergy, and, maybe, to mark a new starting point for a more in-depth study of this topic.
References
Abraham, A., & Ramos, V. (2003). Web usage mining using artificial ant colony clustering and linear genetic programming. In Evolutionary Computation, 2003. CEC'03. The 2003 Congress on (Vol. 2, pp. 1384-1391). IEEE.
http://dx.doi.org/10.1109/CEC.2003.1299832
Chialvo, D. R., Millonas, M. M. (1995). How swarms build cognitive maps. In The biology and technology of intelligent autonomous agents, 439-450.
http://dx.doi.org/10.1007/978-3-642-79629-6_20
Conradt, J. A. (2008). A distributed cognitive map for spatial navigation based on graphically organized place agents Doctoral dissertation, Swiss Federal Institute of Technology, Zurich.
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26(1): 29-41.
Doyle, M. J., Marsh, L. (2013). Stigmergy 3.0: From ants to economies. Cognitive Systems Research, 21: 1-6.
http://dx.doi.org/10.1016/j.cogsys.2012.06.001
Grasse, P. P. (1959) La Reconstruction du nid et les Coordinations Inter-Individuelles chez Bellicositermes Natalensis et Cubitermes sp: La theorie de la Stigmergie: Essai d'interpretation du Comportement des Termites Constructeurs. Insectes Sociaux, 6: 41-82.
http://dx.doi.org/10.1007/BF02223791
Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2): 113-126.
http://dx.doi.org/10.1023/A:1019625207705
Karlson, P., Luscher, M. (1959); Pheromones: a new term for a class of biologically active substances. Nature, 183: 55-56
http://dx.doi.org/10.1038/183055a0
Marsh, L., & Onof, C. (2008). Stigmergic epistemology, stigmergic cognition. Cognitive Systems Research, 9(1):136-149.
http://dx.doi.org/10.1016/j.cogsys.2007.06.009
Negulescu, S. C., Dzitac, I., Lascu, A. E. (2010). Synthetic genes for artificial ants. Diversity in ant colony optimization algorithms. International Journal of Computers Communications & Control, 5(2): 216-223.
Parunak, H. V. D., Brueckner, S., Sauter, J., & Posdamer, J. (2001). Mechanisms and military applications for synthetic pheromones. Ann Arbor, 1001: 48113-4001.
Parunak, H. V. D. (2006). A survey of environments and mechanisms for human-human stigmergy. In Environments for Multi-Agent Systems II, Springer Berlin Heidelberg
http://dx.doi.org/10.1007/11678809_10
Patent application US2006/0094443
Payton, D. W., Daily, M. J., Hoff, B., Howard, M. D., & Lee, C. L. (2001, March). Pheromone robotics. In Intelligent Systems and Smart Manufacturing, International Society for Optics and Photonics, 67-75.
Purnamadjaja, A. H., & Russell, R. A. (2007). Guiding robots' behaviors using pheromone communication. Autonomous Robots, 23(2): 113-130.
http://dx.doi.org/10.1007/s10514-007-9035-x
Rao, A. S., Georgeff, M. P. (1995). BDI agents: From theory to practice. ICMAS, 95: 312-319.
Sim, K. M., & Sun, W. H. (2003); Ant colony optimization for routing and load-balancing: survey and new directions. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 33(5):560-572.
Susnea, I., Vasiliu, G., Filipescu, A., & Radaschin, A. (2009). Virtual pheromones for realtime control of autonomous mobile robots. Studies in Informatics and Control, 18(3): 233-240.
Susnea I. Vasiliu G (2011); A framework for creating mixed robot formations with physical and virtual agents Proc. of the International Conference of the Air Force Academy "Henri Coanda", AFASES2011
Susnea I. (2012). Applications of the Emergence in Cognitive MAS, The Annals of the University Dunarea de Jos of Galati, Fascicle III, 2012, 35(2): 41-48.
Susnea, I., Vasiliu, G., & Mitu, D. E. (2013). Enabling Self-Organization of the Educational Content in Ad Hoc Learning Networks, Studies in Informatics and Control, 22(2): 143-152.
Tolman, E.C. (1948). Cognitive Maps in Rats and Men, The Psychological Review, 55(4): 189-208.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.