iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1515/jnet-2016-0009
Optimal Concentration Configuration of Consecutive Chemical Reaction A ⇔ B ⇔ C for Minimum Entropy Generation Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 29, 2016

Optimal Concentration Configuration of Consecutive Chemical Reaction A ⇔ B ⇔ C for Minimum Entropy Generation

  • Chao Wang , Lingen Chen EMAIL logo , Shaojun Xia and Fengrui Sun

Abstract

A consecutive chemical reaction ABC is studied in this paper. The optimal concentration configuration of the reaction for minimum entropy generation with fixed yield of aimed product B is derived. The optimal concentration configuration with different initial conditions and the optimal initial concentration CC0,opt of the by-product C are obtained numerically. Compared with the control method that the concentration of A increases linearly, the entropy production is reduced by more than 90 %. The minimum entropy generation and optimal configuration of elementary reaction AB are studied by using variational method and nonlinear programming method. The validity of the nonlinear programming method is verified. The reaction rate of elementary reaction AB is in proportion to the square root of the concentration of A when entropy generation of the reaction process is minimum. The results obtained can help one to find the realizable regimes for a chemical reactor.

Funding statement: Funding: This paper was supported by the National Natural Science Foundation of P. R. China (project no. 51576207).

Acknowledgements

The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

References

[1] B. Andresen, Finite-Time Thermodynamics, Copenhagen, Denmark: Physics Laboratory II. University of Copenhagen, 1983.Search in Google Scholar

[2] B. Andresen, R. S. Berry, M. J. Ondrechen and P. Salamon, Thermodynamics for processes in finite time, Acc. Chem. Res. 17 (1984), no. 8, 266–271.10.1021/ar00104a001Search in Google Scholar

[3] Sieniutycz S., Salamon P. (ed.), Advances in Thermodynamics. Volume 4: Finite Time Thermodynamics and Thermoeconomics, Taylor & Francis, New York, 1990.Search in Google Scholar

[4] S. Sieniutycz and J. S. Shiner, Thermodynamics of irreversible processes and its relation to chemical engineering: Second law analyses and finite time thermodynamics, J. Non-Equilib. Thermodyn. 19 (1994), no. 4, 303–348.Search in Google Scholar

[5] K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn. 22 (1997), no. 4, 311–355.Search in Google Scholar

[6] A. Bejan, Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes, J. Appl. Phys. 79 (1996), no. 3, 1191–1218.10.1063/1.362674Search in Google Scholar

[7] L. G. Chen, C. Wu and F. R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn. 24 (1999), no. 4, 327–359.10.1515/JNETDY.1999.020Search in Google Scholar

[8] R. S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast and A. M. Tsirlin, Thermodynamic Optimization of Finite Time Processes, Wiley, Chichester, 1999.Search in Google Scholar

[9] S. S. Hamilton-Jacobi-, Bellman framework for optimal control in multistage energy systems, Phys. Rep. 326 (2000), no. 4, 165–285.10.1016/S0370-1573(99)00116-7Search in Google Scholar

[10] P. Salamon, J. D. Nulton, G. Siragusa, T. R. Andresen and A. Limon, Principles of control thermodynamics, Energy 26 (2001), no. 3, 307–319.10.1016/S0360-5442(00)00059-1Search in Google Scholar

[11] K. H. Hoffmann, Recent developments in finite time thermodynamics, Tech. Mech. 22 (2002), no. 1, 14–25.Search in Google Scholar

[12] K. H. Hoffman, J. Burzler, A. Fischer, M. Schaller and S. Schubert, Optimal process paths for endoreversible systems, J. Non-Equilib. Thermodyn. 28 (2003), no. 3, 233–268.10.1515/JNETDY.2003.015Search in Google Scholar

[13] S. Sieniutycz, Thermodynamic limits on production or consumption of mechanical energy in practical and industry systems, Prog. Energy Combust. Sci. 29 (2003), no. 3, 193–246.10.1016/S0360-1285(03)00020-0Search in Google Scholar

[14] L. G. Chen and F. R. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science Publishers, New York, 2004.Search in Google Scholar

[15] A. Durmayaz, O. S. Sogut, B. Sahin and H. Yavuz, Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics, Prog. Energy Combust. Sci. 30 (2004), no. 2, 175–217.10.1016/j.pecs.2003.10.003Search in Google Scholar

[16] L. G. Chen, Finite Time Thermodynamic Analysis of Irreversible Progresses and Cycles (in Chinese), High Education Press, Beijing, 2005.Search in Google Scholar

[17] W. Muschik and K. H. Hoffmann, Endoreversible thermodynamics: a tool for simulating and comparing processes of discrete systems, J. Non-Equilib. Thermodyn. 31 (2006), no. 3, 293–317.10.1515/JNETDY.2006.013Search in Google Scholar

[18] K. H. Hoffman, An introduction to endoreversible thermodynamics, Atti. Accad. Pelorit. Pericol., Cl. Sci. Fis. Mat. Nat. LXXXVI (2008), no. C1S0801011, 1–18.Search in Google Scholar

[19] W. Muschik, Survey of some branches of thermodynamics, J. Non-Equilib. Thermodyn. 33 (2008), no. 2, 165–198.10.1515/JNETDY.2008.008Search in Google Scholar

[20] A. de Vos, Thermodynamics of Solar Energy Conversion, Weinheim, Germany: Wiley-VCH Verlag, 2008.Search in Google Scholar

[21] B. Andresen, Tools of finite time thermodynamics, in: Natarajan G. S., Bhalekar A. A., Dhondge S. S., Juneja H. D. (eds.), Recent Advances in Thermodynamics Research Including Nonequilibrium Thermodynamics, R. T. M. Nagpur University, Nagpur, India (2008), 24–41.Search in Google Scholar

[22] B. Andresen, Current trends in finite-time thermodynamics, Angew. Chem. Int. Ed. 50 (2011), no. 12, 2690–2704.10.1002/anie.201001411Search in Google Scholar PubMed

[23] S. Sieniutycz and J. Jezowski, Energy Optimization in Process Systems and Fuel Cells, Elsevier, Oxford, UK, 2013.Search in Google Scholar

[24] K. H. Hoffmann, B. Andresen and P. Salamon, Finite-time thermodynamics tools to analyze dissipative processes, in: Dinner A. R. (ed.), Proceedings of the 240 Conference: Science’s Great Challenges, Advances in Chemical Physics, Hoboken, the United State: Wiley, 157 (2015), 57–67.Search in Google Scholar

[25] A. V. Vaudrey, F. Lanzetta and M. Feidt, H.B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines, J. Non-Equilib. Thermodyn. 39 (2014), no. 4, 199–204.10.1515/jnet-2014-0018Search in Google Scholar

[26] L. G. Chen, J. Z. Gong, L. W. Shen, F. R. Sun and C. Wu, Theoretical analysis and experimental confirmation for the performance of thermoelectric refrigerator, J. Non-Equilib. Thermodyn. 26 (2001), no. 1, 85–92.10.1515/JNETDY.2001.007Search in Google Scholar

[27] Y. H. Bi, L. G. Chen, C. Wu and S. H. Wang, Effect of heat transfer on the performance of thermoelectric heat pumps, J. Non-Equilib. Thermodyn. 26 (2001), no. 1, 41–51.10.1515/JNETDY.2001.004Search in Google Scholar

[28] L. G. Chen, F. R. Sun and C. Wu, Effect of heat transfer law on the performance of a generalized irreversible carnot refrigerator, J. Non-Equilib. Thermodyn. 26 (2001), no. 3, 291–304.10.1515/JNETDY.2001.021Search in Google Scholar

[29] H. J. Song, L. G. Chen, F. R. Sun and S. B. Wang, Configuration of heat engines for maximum power output with fixed compression ratio and generalized radiative heat transfer law, J. Non-Equilib. Thermodyn. 33 (2008), no. 3, 275–295.10.1515/JNETDY.2008.012Search in Google Scholar

[30] W. Muschik and B. V. Irreversible Jaynes, Engine for more efficient heating, J. Non-Equilib. Thermodyn. 33 (2008), no. 4, 297–306.10.1515/JNETDY.2008.013Search in Google Scholar

[31] A. M. Tsirlin and I. N. Grigorevsky, Thermodynamical estimation of the limit potentialities of irreversible binary distillation, J. Non-Equilib. Thermodyn. 35 (2010), no. 3, 213–234.10.1515/jnetdy.2010.013Search in Google Scholar

[32] L. G. Chen, K. Ma and F. R. Sun, Optimal expansion of a heated working fluid for maximum work output with time-dependent heat conductance and generalized radiative heat transfer law, J. Non-Equilib. Thermodyn. 36 (2011), no. 2, 99–122.10.1515/jnetdy.2011.007Search in Google Scholar

[33] L. G. Chen, Z. M. Ding and F. R. Sun, Optimum performance analysis of Feynman’s engine as cold and hot ratchets, J. Non-Equilib. Thermodyn. 36 (2011), no. 2, 155–177.10.1515/jnetdy.2011.011Search in Google Scholar

[34] V. Badescu, Lost available work and entropy generation: heat versus radiation reservoirs, J. Non-Equilib. Thermodyn. 38 (2013), no. 4, 313–334.10.1515/jnetdy-2013-0017Search in Google Scholar

[35] A. M. Tsirlin and I. A. Sukin, Finite-time thermodynamics: the maximal productivity of binary distillation and selection of optimal separation sequence for an ideal ternary mixture, J. Non-Equilib. Thermodyn. 39 (2014), no. 1, 13–26.10.1515/jnetdy-2013-0033Search in Google Scholar

[36] E. Açıkkalp and H. Yamık, Modeling and optimization of maximum available work for irreversible gas power cycles with temperature dependent specific heat, J. Non-Equilib. Thermodyn. 40 (2015), no. 1, 25–39.10.1515/jnet-2014-0030Search in Google Scholar

[37] R. S. Johal, Efficiency at optimal work from finite source and sink: A probabilistic perspective, J. Non-Equilib. Thermodyn. 40 (2015), no. 1, 1–12.10.1515/jnet-2014-0021Search in Google Scholar

[38] K. Wagner and K. H. Hoffmann, Endoreversible modeling of a PEM fuel cell, J. Non-Equilib. Thermodyn. 40 (2015), no. 4, 283–294.10.1515/jnet-2015-0061Search in Google Scholar

[39] K. H. Hoffmann, K. Schmidt and P. Salamon, Quantum finite time availability for parametric oscillators, J. Non-Equilib. Thermodyn. 45 (2016), in press.10.1515/jnet-2015-0025Search in Google Scholar

[40] M. J. Ondrechen, R. S. Berry and B. Andresen, Thermodynamics in finite time: a chemically driven engine, J. Chem. Phys. 72 (1980), no. 9, 5118–5124.10.1063/1.439744Search in Google Scholar

[41] M. J. Ondrechen, B. Andresen and R. S. Berry, Thermodynamics in finite time: processes with temperature-dependent chemical reactions, J. Chem. Phys. 73 (1980), no. 11, 5838–5843.10.1063/1.440026Search in Google Scholar

[42] V. Badescu and B. Andresen, Probabilistic finite time thermodynamics: a chemically driven engine, J. Non-Equilib. Thermodyn. 21 (1996), no. 4, 291–306.10.1515/jnet.1996.21.4.291Search in Google Scholar

[43] L. Zhang, L. G. Chen and F. R. Sun, Power optimization chemically driven heat engine based on first and second order reaction kinetic theory and probability theory, Physica A 445 (2016), 221–230.10.1016/j.physa.2015.11.009Search in Google Scholar

[44] A. De Vos, Endoreversible thermodynamics and chemical reactions, J. Phys. Chem. 95 (1991), no. 11, 4534–4540.10.1021/j100164a065Search in Google Scholar

[45] L. G. Chen, F. R. Sun and C. Wu, Performance of chemical engines with mass leak, J. Phys. D: Appl. Phys. 31 (1998), no. 13, 1595–1600.10.1088/0022-3727/31/13/014Search in Google Scholar

[46] L. G. Chen, H. Duan, F. R. Sun and C. Wu, Performance of a combined-cycle chemical engine with mass leak, J. Non-Equilib. Thermodyn. 24 (1999), no. 3, 280–290.10.1515/JNETDY.1999.017Search in Google Scholar

[47] H. Hooyberghs, B. Cleuren, A. Salazar, J. O. Indekeu and C. van den Broeck, Efficiency at maximum power of a chemical engine, J. Chem. Phys. 139 (2013), no. 13, 134111.10.1063/1.4821353Search in Google Scholar PubMed

[48] K. Wagner and K. H. Hoffmann, Chemical reactions in endoreversible thermodynamics, Eur. J. Phys. 37 (2016), no. 1, 015101.10.1088/0143-0807/37/1/015101Search in Google Scholar

[49] J. C. Schon and B. Andresen, Finite-time optimization of chemical reaction:, J. Phys. Chem. 100 (1996), no. 21, 8843–8853.10.1021/jp953316fSearch in Google Scholar

[50] T. A. Bak, P. Salamon and B. Andresen, Optimal behavior of consecutive chemical reactions, J. Phys. Chem. A. 106 (2002), no. 25, 10961–10964.10.1021/jp021800uSearch in Google Scholar

[51] L. G. Chen, H. J. Song and F. R. Sun, Optimal path of the consecutive reactions, Phys. Scr. 79 (2009), no. 5, 55802.10.1088/0031-8949/79/05/055802Search in Google Scholar

[52] A. M. Tsirlin, V. Kazakov and N. M. Kan, Thermodynamic analysis and thermodynamic efficiency of chemical reactors, J. Phys. Chem. B 110 (2006), no. 5, 2338–2342.10.1021/jp055357+Search in Google Scholar PubMed

[53] A. M. Tsirlin, N. M. Kan and V. V. Trushkov, Thermodynamic analysis and evaluation of the feasibility range of chemical reactor, Theor. Found. Chem. Eng. 40 (2006), no. 1, 36–41.10.1134/S0040579506010052Search in Google Scholar

[54] S. Kjelstrup, E. Johannessen, A. Rosjorde, L. Nummedal and D. Bedeaux, Minimizing the entropy production of the methanol producing reaction in a methanol reactor, Int. J. Appl. Thermodyn. 3 (2000), no. 4, 147–153.Search in Google Scholar

[55] L. Nummedal, S. Kjelstrup and M. Costea, Minimizing the entropy production rate of an exothermic reactor with a constant heat-transfer coefficient: the ammonia reaction, Ind. Eng. Chem. Res. 42 (2003), no. 5, 1044–1056.10.1021/ie020319nSearch in Google Scholar

[56] E. Johannessen and S. Kjelstrup, Minimizing the entropy production rate in plug flow reactors: An optimal control problem solved for SO2 oxidation, Energy 29 (2004), no. 12–15, 2403–2423.10.1016/j.energy.2004.03.033Search in Google Scholar

[57] O. Wilhelmsen, E. Johannessen and S. Kjelstrup, Energy efficient reactor design simplified by second law analysis, Int. J. Hydrogen Energy 35 (2010), no. 24, 13219–13231.10.1016/j.ijhydene.2010.08.118Search in Google Scholar

[58] C. Wang, L. G. Chen, S. J. Xia and F. R. Sun, Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor, Energy 99 (2016), 152–158.10.1016/j.energy.2016.01.040Search in Google Scholar

[59] S. J. Xia, L. G. Chen and F. R. Sun, Maximum power configuration for multireservoir chemical engines, J. Appl. Phys. 105 (2009), no. 12, 124905.10.1063/1.3151964Search in Google Scholar

[60] S. J. Xia, L. G. Chen and F. R. Sun, Maximum work configurations of finite potential reservoir chemical engines, Sci. China Chem. 53 (2010), no. 5, 1168–1176.10.1007/s11426-010-0132-xSearch in Google Scholar

[61] S. J. Xia, L. G. Chen and F. R. Sun, Optimal configuration of a finite mass reservoir isothermal chemical engine for maximum work output with linear mass transfer law, Rev. Mex. Fis. 55 (2009), no. 5, 399–408.Search in Google Scholar

[62] S. Kjelstrup, E. Johannessen and A. Rosjorde, Two established process technologies confirmed by entropy production minimization, Int. J. Energ. Environ. Eng. 2 (2011), no. 4, 45–56.Search in Google Scholar

Received: 2016-2-10
Revised: 2016-4-6
Accepted: 2016-4-7
Published Online: 2016-4-29
Published in Print: 2016-10-1

©2016 by De Gruyter Mouton

Downloaded on 15.12.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2016-0009/html
Scroll to top button