iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.14736/kyb-2017-3-0394
Kybernetika - Article detail

Kybernetika 53 no. 3, 394-417, 2017

Construction of uninorms on bounded lattices

Gül Deniz Çaylı and Funda KaraçalDOI: 10.14736/kyb-2017-3-0394

Abstract:

In this paper, we propose the general methods, yielding uninorms on the bounded lattice $(L,\leq ,0,1)$, with some additional constraints on $e\in L\backslash \{0,1\}$ for a fixed neutral element $e\in L\backslash \{0,1\}$ based on underlying an arbitrary triangular norm $T_{e}$ on $[0,e]$ and an arbitrary triangular conorm $S_{e}$ on $[e,1]$. And, some illustrative examples are added for clarity.

Keywords:

triangular norm, triangular conorm, uninorms, bounded lattice

Classification:

03B52, 06B20, 03E72

References:

  1. E. Aşıcı and F. Karaçal: On the T-partial order and properties. Inf. Sci. 267 (2014), 323-333.   DOI:10.1016/j.ins.2014.01.032
  2. E. Aşıcı and F. Karaçal: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27.   DOI:10.14736/kyb-2016-1-0015
  3. E. Aşıcı: An order induced by nullnorms and its properties. Fuzzy Sets Syst. In press 2017.   DOI:10.1016/j.fss.2016.12.004
  4. G. Birkhoff: Lattice Theory. American Mathematical Society Colloquium Publ., Providence 1967.   DOI:10.1090/coll/025
  5. B. De Baets: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642.   DOI:10.1016/s0377-2217(98)00325-7
  6. S. Bodjanova and M. Kalina: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica.   DOI:10.1109/sisy.2014.6923558
  7. G. D. Çaylı, F. Karaçal and R. Mesiar: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231.   DOI:10.1016/j.ins.2016.05.036
  8. G. D. Çaylı and F. Karaçal: Some remarks on idempotent nullnorms on bounded lattices. In: Torra V., Mesiar R., Baets B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, Springer, Cham, 581 (2017), 31-39.   DOI:10.1007/978-3-319-59306-7_4
  9. J. Drewniak and P. Drygaś: On a class of uninorms. Int. J. Uncertainly Fuzziness Knowl.-Based Syst. 10 (2002), 5-10.   DOI:10.1142/s021848850200179x
  10. P. Drygaś: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157.   DOI:10.1016/j.fss.2009.09.017
  11. P. Drygaś, D. Ruiz-Aguilera and J. Torrens: Acharacterization of uninorms locally internal in $A(e)$ with continuous underlying operators. Fuzzy Sets Syst. 287 (2016), 137-153.   DOI:10.1016/j.fss.2015.07.015
  12. P. Drygaś and E. Rak: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291 (2016), 82-97.   DOI:10.1016/j.fss.2015.02.014
  13. Ü. Ertuğrul, M. N. Kesicioğlu and F. Karaçal: Ordering based on uninorms. Inf. Sci. 330 (2016), 315-327.   DOI:10.1016/j.ins.2015.10.019
  14. J. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertain Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.   DOI:10.1142/s0218488597000312
  15. F. Karaçal and R. Mesiar: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.   DOI:10.1016/j.fss.2014.05.001
  16. F. Karaçal, Ü. Ertuğrul and R. Mesiar: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71.   DOI:10.1016/j.fss.2016.05.014
  17. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Acad. Publ., Dordrecht 2000.   DOI:10.1007/978-94-015-9540-7
  18. M. Mas, M. Monserrat and J. Torrens: On left and right uninorms. Int. J. Uncertainly Fuzziness Knowl.-Based Syst. 9 (2001), 491-507.   DOI:10.1142/s0218488501000909
  19. B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York 1983.   CrossRef
  20. M. Takács: Lattice Ordered Monoids and Left Continuous Uninorms and t-norms. Book Chapter from: Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, Book Series: Advances in Soft Computing, Publisher: Springer Berlin/ Heidelberg, 42 (2007), 565-572.   DOI:10.1007/978-3-540-72434-6_57
  21. Z. D. Wang and J. X. Fang: Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets Syst. 160 (2009), 22-31.   DOI:10.1016/j.fss.2008.03.001
  22. R. R. Yager: Misrepresentations and challenges: a response to Elkan. IEEE Expert 1994.   CrossRef
  23. R. R. Yager and A. Rybalov: Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6