Interactions between gastrointestinal signals are a part of integrated systems regulating food intake (FI). We investigated whether cholecystokinin (CCK)-8 and urocortin systems potentiate each other to inhibit FI and gastric emptying (GE) in fasted mice. Urocortin 1 and urocortin 2 (1 μg/kg) were injected ip alone or with CCK (3 μg/kg) in lean, diet-induced obese (DIO) or corticotropin-releasing factor receptor-2 (CRF2)-deficient mice. Gastric vagal afferent activity was recorded from a rat stomach-vagus in vitro preparation. When injected separately, urocortin 1, urocortin 2, or CCK did not modify the 4-h cumulative FI in lean mice. However, CCK plus urocortin 1 or CCK plus urocortin 2 decreased significantly the 4-h FI by 39 and 27%, respectively, compared with the vehicle + vehicle group in lean mice but not in DIO mice. Likewise, CCK-urocortin-1 delayed GE in lean but not DIO mice, whereas either peptide injected alone at the same dose had no effect. CCK-urocortin 2 suppression of FI was observed in wild-type but not CRF2-deficient mice. Gastric vagal afferent activity was increased by intragastric artery injection of urocortin 2 after CCK at a subthreshold dose, and the response was reversed by devazepide. These data establish a peripheral synergistic interaction between CCK and urocortin 1 or urocortin 2 to suppress FI and GE through CRF2 receptor in lean mice that may involve CCK modulation of gastric vagal afferent responsiveness to urocortin 2. Such synergy is lost in DIO mice, suggesting a resistance to the satiety signaling that may contribute to maintain obesity.

You do not currently have access to this article.