Abstract
Alcohol dehydrogenases (ADHs) are most known for their roles in oxidation and elimination of ethanol. Although less known, ADHs also play a critical role in the metabolism of a number of drugs and metabolites that contain alcohol functional groups, such as abacavir (HIV/AIDS), hydroxyzine (antihistamine), and ethambutol (antituberculosis). ADHs consist of 7 gene family numbers and several genetic polymorphic forms. ADHs are cytosolic enzymes that are most abundantly found in the liver, although also present in other tissues including gastrointestinal tract and adipose. Marked species differences exist for ADHs including genes, proteins, enzymatic activity, and tissue distribution. The active site of ADHs is relatively small and cylindrical in shape. This results in somewhat narrow substrate specificity. Secondary alcohols are generally poor substrates for ADHs. In vitro-in vivo correlations for ADHs have not been established, partly due to insufficient clinical data. Fomepizole (4-methylpyrazole) is a nonspecific ADH inhibitor currently being used as an antidote for the treatment of methanol and ethylene glycol poisoning. Fomepizole also has the potential to treat intoxication of other substances of abuse by inhibiting ADHs to prevent formation of toxic metabolites. ADHs are inducible through farnesoid X receptor (FXR) and other transcription factors. Drug-drug interactions have been observed in the clinic for ADHs between ethanol and therapeutic drugs, and between fomepizole and ADH substrates. Future research in this area will provide additional insights about this class of complex, yet fascinating enzymes.
Similar content being viewed by others
Abbreviations
- ADHs:
-
Alcohol dehydrogenases
- AIDS:
-
Acquired immunodeficiency syndrome
- ALDHs:
-
Aldehyde dehydrogenases
- AUC:
-
Area under the curve
- BMI:
-
Body mass index
- CB1 and CB2:
-
Cannabinoid receptors 1 and 2
- CDCA:
-
Chenodeoxycholic acid
- C/EBPα and β:
-
CCAAT-enhancer binding proteins α and β
- Cmax :
-
Maximum concentration
- CNS:
-
Central nervous system
- COX-2:
-
Cyclooxygenase-2
- CTF:
-
CAAT box-binding transcription factor
- CYP:
-
Cytochrome P450
- DEA:
-
Drug enforcement agency
- DDI:
-
Drug-drug interaction
- [E]:
-
Enzyme concentration
- [E•NAD+]:
-
Concentration of NAD+ bound enzyme
- FDA:
-
The Food and Drug Administration
- FXR:
-
Farnesoid X receptor
- GIT:
-
Gastrointestinal tract;
- HIV:
-
Human immunodeficiency virus
- HNF-1:
-
Hepatocyte nuclear factor 1
- HOGO:
-
Human Genome Organisation
- 5-HT:
-
5-Hydroxytryptamine receptors
- IC50 :
-
Half maximal inhibitory concentration
- ISEF:
-
Intersystem extrapolation factor
- IVIVE:
-
In vitro-in vivo extrapolation
- kDa:
-
Kilodalton
- Ki :
-
Inhibition constant
- Km :
-
Michaelis-Menten constant
- LC-MS/MS:
-
Liquid chromatography with tandem mass spectrometry
- Log P:
-
Lipophilicity
- MDRs:
-
Medium-chain dehydrogenases/reductases
- 4-MP:
-
4-Methylpyrazole
- mRNA:
-
Messenger ribonucleic acid
- NAD+ :
-
Nicotinamide adenine dinucleotide
- NADH:
-
Reduced form of nicotinamide adenine dinucleotide
- NASH:
-
Nonalcoholic steatohepatitis
- NBP:
-
Butylphthalide or l-3-n-butylphthalide
- NF-1:
-
Nuclear factor-1
- NSAID:
-
Anti-inflammatory drug
- SSRI:
-
Selective serotonin reuptake inhibitor
- OCD:
-
Obsessive compulsive disorder
- PEG:
-
Polyethylene glycols
- PK:
-
Pharmacokinetics
- P-gp:
-
P-glycoprotein
- RAF:
-
Relative activity factor
- SGLT2:
-
Sodium-glucose co-transporter 2
- T2DM:
-
Type 2 diabetes mellitus
- UGT:
-
UDP-glucuronosyltransferase
- USF:
-
Upstream stimulatory factor
References
Edenberg HJ, McClintick JN. Alcohol dehydrogenases, aldehyde dehydrogenases, and alcohol use disorders: a critical review. Alcohol Clin Exp Res. 2018;42(12):2281–97. https://doi.org/10.1111/acer.13904.
Edenberg HJ, Bosron WF. Alcohol dehydrogenases. In: McQueen CA, editor. Comprehensive toxicology. 3nd ed. Oxford: Elsevier; 2018. p. 126–39.
Bhatt DK, Gaedigk A, Pearce RE, Leeder JS, Prasad B. Age-dependent protein abundance of cytosolic alcohol and aldehyde dehydrogenases in human liver. Drug Metab Dispos. 2017;45(9):1044–8,S1-S34. https://doi.org/10.1124/dmd.117.076463.
Parkinson A, Ogilvie BW, Buckley DB, Kazmi F, Parkinson O. Biotransformation of xenobiotics. In: Klaassen C, editor. The basic science of poisons. 9th ed. New York: McGraw-Hill Education; 2018. p. 243.
Yang Z-N, Bosron WF, Hurley TD. Structure of human χχ alcohol dehydrogenase: a glutathione-dependent formaldehyde dehydrogenase. J Mol Biol. 1997;265(3):330–43. https://doi.org/10.1006/jmbi.1996.0731.
Duester G, Farres J, Felder MR, Holmes RS, Hoog J-O, Pares X, et al. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem Pharmacol. 1999;58(3):389–95. https://doi.org/10.1016/S0006-2952(99)00065-9.
Ostberg LJ, Persson B, Persson B, Hoog J-O. Computational studies of human class V alcohol dehydrogenase - the odd sibling. BMC Biochem. 2016;17(1):16.
Edenberg HJ. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health. 2007;30(1):5–13.
Deltour L, Foglio MH, Duester G. Metabolic deficiencies in alcohol dehydrogenase Adh1, Adh3, and Adh4 null mutant mice. Overlapping roles of Adh1 and Adh4 in ethanol clearance and metabolism of retinol to retinoic acid. J Biol Chem. 1999;274(24):16796–801. https://doi.org/10.1074/jbc.274.24.16796.
Parkin G. Synthetic analogues relevant to the structure and function of zinc enzymes. Chem Rev (Washington, DC, U S). 2004;104(2):699–767. https://doi.org/10.1021/cr0206263.
Crichton R. Biological inorganic chemistry: a new introduction to molecular structure and function. Chapter 12. Zinc: Lewis Acid and Gene Regulator. 3rd ed2018.
Auld DS. Zinc coordination sphere in biochemical zinc sites. BioMetals. 2001;14(3–4):271–313.
Eklund H, Braenden CI. Alcohol dehydrogenase. Biol Macromol Assem. 1987;3:73–142.
Eklund H, Samama JP, Wallen L, Braenden CI, Aakeson A, Jones TA. Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 Å resolution. J Mol Biol. 1981;146(4):561–87. https://doi.org/10.1016/0022-2836(81)90047-4.
Klinman JP. Probes of mechanism and transition-state structure in the alcohol dehydrogenase reaction. CRC Crit Rev Biochem. 1981;10(1):39–78. https://doi.org/10.3109/10409238109114635.
Hurley TD, Bosron WF, Hamilton JA, Amzel LM. Structure of human β1β1 alcohol dehydrogenase: catalytic effects of non-active-site substitutions. Proc Natl Acad Sci U S A. 1991;88(18):8149–53. https://doi.org/10.1073/pnas.88.18.8149.
Hurley TD, Bosron WF, Stone CL, Amzel LM. Structures of three human β alcohol dehydrogenase variants. Correlations with their functional differences. J Mol Biol. 1994;239(3):415–29. https://doi.org/10.1006/jmbi.1994.1382.
Davis GJ, Bosron WF, Stone CL, Owusu-Dekyi K, Hurley TD. X-ray structure of human beta3beta3 alcohol dehydrogenase. The contribution of ionic interactions to coenzyme binding. J Biol Chem. 1996;271(29):17057–61.
Xie P, Parsons SH, Speckhard DC, Bosron WF, Hurley TD. X-ray structure of human class IV sigmasigma alcohol dehydrogenase. Structural basis for substrate specificity. J Biol Chem. 1997;272(30):18558–63.
Niederhut MS, Gibbons BJ, Perez-Miller S, Hurley TD. Three-dimensional structures of the three human class I alcohol dehydrogenases. Protein Sci. 2001;10(4):697–706. https://doi.org/10.1110/ps.45001.
Eklund H, Plapp BV, Samama JP, Braenden CI. Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase. J Biol Chem. 1982;257(23):14349–58.
Gibbons BJ, Hurley TD. Structure of three class I human alcohol dehydrogenases complexed with Isoenzyme specific Formamide inhibitors. Biochemistry. 2004;43(39):12555–62. https://doi.org/10.1021/bi0489107.
Stone CL, Li TK, Bosron WF. Stereospecific oxidation of secondary alcohols by human alcohol dehydrogenases. J Biol Chem. 1989;264(19):11112–6.
McEvily AJ, Holmquist B, Auld DS, Vallee BL. 3β-Hydroxy-5β-steroid dehydrogenase activity of human liver alcohol dehydrogenase is specific to γ-subunits. Biochemistry. 1988;27(12):4284–8. https://doi.org/10.1021/bi00412a013.
Hansch C, Schaeffer J, Kerley R. Alcohol dehydrogenase structure-activity relationships. J Biol Chem. 1972;247(14):4703–10.
Carrigan MA, Uryasev O, Davis RP, Zhai LM, Hurley TD, Benner SA. The natural history of class I primate alcohol dehydrogenases includes gene duplication, gene loss and gene conversion. PLoS One. 2012;7(7):e41175. https://doi.org/10.1371/journal.pone.0041175.
Szalai G, Duester G, Friedman R, Jia H, Lin S, Roe BA, et al. Organization of six functional mouse alcohol dehydrogenase genes on two overlapping bacterial artificial chromosomes. Eur J Biochem. 2002;269(1):224–32. https://doi.org/10.1046/j.0014-2956.2001.02642.x.
Hur MW, Edenberg HJ. Cloning and characterization of the ADH5 gene encoding human alcohol dehydrogenase 5, formaldehyde dehydrogenase. Gene. 1992;121(2):305–11. https://doi.org/10.1016/0378-1119(92)90135-C.
Matsuo Y, Yokoyama S. Cloning and sequencing of a processed pseudogene derived from a human class III alcohol dehydrogenase gene. Am J Hum Genet. 1990;46(1):85–91.
Winnier DA, Fourcaudot M, Norton L, Abdul-Ghani MA, Hu SL, Farook VS, et al. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in mexican americans from the veterans administration genetic epidemiology study (VAGES). PLoS One. 2015;10(4):e0119941/1-e/26. https://doi.org/10.1371/journal.pone.0119941.
Jelski W, Chrostek L, Szmitkowski M, Laszewicz W. Activity of class I, II, III, and IV alcohol dehydrogenase isoenzymes in human gastric mucosa. Dig Dis Sci. 2002;47(7):1554–7.
Allali-Hassani A, Martinez SE, Peralba JM, Vaglenova J, Vidal F, Richart C, et al. Alcohol dehydrogenase of human and rat blood vessels. Role in ethanol metabolism. [Erratum to document cited in CA126:208441]. FEBS Lett. 1997;411(2,3):395. https://doi.org/10.1016/S0014-5793(97)00151-8.
Allali-Hassani A, Martinez SE, Peralba JM, Vaglenova J, Vidal F, Richart C, et al. Alcohol dehydrogenase of human and rat blood vessels. Role in ethanol metabolism. FEBS Lett. 1997;405(1):26–30. https://doi.org/10.1016/S0014-5793(97)00151-8.
Mumenthaler MS, Taylor JL, O'Hara R, Yesavage JA. Gender differences in moderate drinking effects. Alcohol Res Health. 1999;23(1):55–64.
Baraona E, Abittan CS, Dohmen K, Moretti M, Pozzato G, Chayes ZW, et al. Gender differences in pharmacokinetics of alcohol. Alcohol Clin Exp Res. 2001;25(4):502–7. https://doi.org/10.1111/j.1530-0277.2001.tb02242.x.
Seitz HK, Egerer G, Simanowski UA, Waldherr R, Eckey R, Agarwal DP, et al. Human gastric alcohol dehydrogenase activity: effect of age, sex, and alcoholism. Gut. 1993;34(10):1433–7. https://doi.org/10.1136/gut.34.10.1433.
Parlesak A, Billinger MH-U, Bode C, Bode JC. Gastric alcohol dehydrogenase activity in man: influence of gender, age, alcohol consumption and smoking in a Caucasian population. Alcohol Alcohol (Oxford, U K). 2002;37(4):388–93. https://doi.org/10.1093/alcalc/37.4.388.
Frezza M, di Padova C, Pozzato G, Terpin M, Baraona E, Lieber CS. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med. 1990;322(2):95–9.
Maly IP, Sasse D. Intraacinar profiles of alcohol dehydrogenase and aldehyde dehydrogenase activities in human liver. Gastroenterology. 1991;101(6):1716–23. https://doi.org/10.1016/0016-5085(91)90412-E.
Chrostek L, Jelski W, Szmitkowski M, Puchalski Z. Gender-related differences in hepatic activity of alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in humans. J Clin Lab Anal. 2003;17(3):93–6. https://doi.org/10.1002/jcla.10076.
Rachamin G, Macdonald JA, Wahid S, Clapp JJ, Khanna JM, Israel Y. Modulation of alcohol dehydrogenase and ethanol metabolism by sex hormones in the spontaneously hypertensive rat. Effect of chronic ethanol administration. Biochem J. 1980;186(2):483–90. https://doi.org/10.1042/bj1860483.
Simon FR, Fortune J, Iwahashi M, Sutherland E. Sexual dimorphic expression of ADH in rat liver: importance of the hypothalamic-pituitary-liver axis. Am J Physiol. 2002;283(3, Pt. 1):G646–G55.
Quintanilla ME, Tampier L, Sapag A, Gerdtzen Z, Israel Y. Sex differences, alcohol dehydrogenase, acetaldehyde burst, and aversion to ethanol in the rat: a systems perspective. Am J Physiol. 2007;293(2, Pt. 1):E531–E7. https://doi.org/10.1152/ajpendo.00187.2007.
Rachamin G, Israel Y. Sex differences in hepatic alcohol dehydrogenase activity in animal species. Biochem Pharmacol. 1985;34(13):2385–6. https://doi.org/10.1016/0006-2952(85)90798-1.
DiPadova C, Worner TM, Julkunen RJ, Lieber CS. Effects of fasting and chronic alcohol consumption on the first-pass metabolism of ethanol. Gastroenterology. 1987;92(5 Pt 1):1169–73.
Cederbaum AI. Alcohol metabolism. Clin Liver Dis. 2012;16(4):667–85.
Oneta CM, Simanowski UA, Martinez M, Allali-Hassani A, Pares X, Homann N, et al. First pass metabolism of ethanol is strikingly influenced by the speed of gastric emptying. Gut. 1998;43(5):612–9. https://doi.org/10.1136/gut.43.5.612.
Bosron WF, Li TK. Catalytic properties of human liver alcohol dehydrogenase isoenzymes. Enzyme. 1987;37(1–2):19–28. https://doi.org/10.1159/000469238.
Ehlers CL, Gilder DA, Harris L, Carr L. Association of the ADH2*3 allele with a negative family history of alcoholism in African American young adults. Alcohol Clin Exp Res. 2001;25(12):1773–7. https://doi.org/10.1111/j.1530-0277.2001.tb02189.x.
Li H, Toth E, Cherrington NJ. Alcohol metabolism in the progression of human nonalcoholic steatohepatitis. Toxicol Sci. 2018;164(2):428–38. https://doi.org/10.1093/toxsci/kfy106.
Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L. Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS One. 2010;5(3):e9570.
Wei SZ, Xu L, Schooling CM, Jiang CQ, Cheng KK, Liu B, et al. Effect of alcohol and aldehyde dehydrogenase gene polymorphisms on alcohol-associated hypertension: the Guangzhou Biobank Cohort Study. Hypertens Res. 2013;36(8):741–6. https://doi.org/10.1038/hr.2013.23.
Orywal K, Jelski W, Werel T, Szmitkowski M. The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in the sera of bladder cancer patients. Acta Biochim Pol. 2017;64(1):81–4. https://doi.org/10.18388/abp.2016_1289.
Laniewska-Dunaj M, Jelski W, Orywal K, Kochanowicz J, Rutkowski R, Szmitkowski M. The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) Isoenzymes and aldehyde dehydrogenase (ALDH) in brain Cancer. Neurochem Res. 2013;38(7):1517–21. https://doi.org/10.1007/s11064-013-1053-9.
Orywal K, Jelski W, Zdrodowski M, Szmitkowski M. The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in cervical cancer. Clin Biochem. 2011;44(14–15):1231–4. https://doi.org/10.1016/j.clinbiochem.2011.07.004.
Jelski W, Zalewski B, Chrostek L, Szmitkowski M. The activity of class I, II, III, and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in colorectal Cancer. Dig Dis Sci. 2004;49(6):977–81. https://doi.org/10.1023/B:DDAS.0000034557.23322.e0.
Orywal K, Jelski W, Zdrodowski M, Szmitkowski M. The activity of class I, II, III, and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in endometrial cancer. J Clin Lab Anal. 2010;24(5):334–9.
Jelski W, Zalewski B, Szmitkowski M. The activity of class I, II, III, and IV alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in liver cancer. Dig Dis Sci. 2008;53(9):2550–5. https://doi.org/10.1007/s10620-007-0153-2.
Orywal K, Jelski W, Werel T, Szmitkowski M. The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in renal cell carcinoma. Exp Mol Pathol. 2015;98(3):403–6. https://doi.org/10.1016/j.yexmp.2015.03.012.
Orywal K, Jelski W, Zdrodowski M, Szmitkowski M. The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in ovarian cancer and ovarian cysts. Adv Med Sci. 2013;58(2):216–20. https://doi.org/10.2478/ams-2013-0012.
Jelski W, Orywal K, Panek B, Gacko M, Mroczko B, Szmitkowski M. The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the wall of abdominal aortic aneurysms. Exp Mol Pathol. 2009;87(1):59–62. https://doi.org/10.1016/j.yexmp.2009.03.001.
Jelski W, Chrostek L, Szmitkowski M, Markiewicz W. The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in breast cancer. Clin Exp Med. 2006;6(2):89–93. https://doi.org/10.1007/s10238-006-0101-z.
Jelski W, Kozlowski M, Laudanski J, Niklinski J, Szmitkowski M. The activity of class I, II, III, and IV alcohol dehydrogenase (ADH) Isoenzymes and aldehyde dehydrogenase (ALDH) in esophageal cancer. Dig Dis Sci. 2009;54(4):725–30. https://doi.org/10.1007/s10620-008-0422-8.
Jelski W, Chrostek L, Szmitkowski M. The activity of class I, II, III, and IV of alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in pancreatic cancer. Pancreas (Hagerstown, MD, U S). 2007;35(2):142–6. https://doi.org/10.1097/MPA.0b013e318053eae2.
Buervenich S, Sydow O, Carmine A, Zhang Z, Anvret M, Olson L. Alcohol dehydrogenase alleles in Parkinson’s disease. Mov Disord. 2000;15(5):813–8.
Buervenich S, Carmine A, Galter D, Shahabi HN, Johnels B, Holmberg B, et al. A rare truncating mutation in ADH1C (G78Stop) shows significant association with Parkinson disease in a large international sample. Arch Neurol. 2005;62(1):74–8.
Tan EK, Nagamitsu S, Matsuura T, Khajavi M, Jankovic J, Ondo W, et al. Alcohol dehydrogenase polymorphism and Parkinson's disease. Neurosci Lett. 2001;305(1):70–2. https://doi.org/10.1016/S0304-3940(01)01770-0.
Kim JJ, Bandres-Ciga S, Blauwendraat C, Gan-Or Z. No genetic evidence for involvement of alcohol dehydrogenase genes in risk for Parkinson’s disease. Neurobiol Aging. 2020;87:140.e19–22. https://doi.org/10.1016/j.neurobiolaging.2019.11.006.
Seitz HK, Oneta CM. Gastrointestinal alcohol dehydrogenase. Nutr Rev. 1998;56(2 Pt 1):52–60.
Grilo NM, Antunes AMM, Caixas U, Marinho AT, Charneira C, Conceicao Oliveira M, et al. Monitoring abacavir bioactivation in humans: screening for an aldehyde metabolite. Toxicol Lett. 2013;219(1):59–64. https://doi.org/10.1016/j.toxlet.2013.02.021.
Walsh JS, Reese MJ, Thurmond LM. The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. Chem Biol Interact. 2002;142(1–2):135–54. https://doi.org/10.1016/S0009-2797(02)00059-5.
McDowell JA, Chittick GE, Stevens CP, Edwards KD, Stein DS. Pharmacokinetic interaction of abacavir (1592U89) and ethanol in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother. 2000;44(6):1686–90. https://doi.org/10.1128/AAC.44.6.1686-1690.2000.
Liakoni E, Gugelmann H, Dempsey DA, Wiegand TJ, Havel C, Jacob P, et al. Butanediol conversion to gamma-hydroxybutyrate markedly reduced by the alcohol dehydrogenase blocker fomepizole. Clin Pharmacol Ther (Hoboken, NJ, U S). 2019;105(5):1196–203. https://doi.org/10.1002/cpt.1306.
Anderson I, Kim-Katz S, Dyer J, Blanc P. The impact of gamma hydroxybutyrate (GHB) legal restrictions on patterns of use: results from an international survey. Drugs (Abingdon Engl). 2010;17(5):455–69.
Abdoulaye IA, Guo YJ, et al. BioMed Res Int. 2016:5012341/1−/9. https://doi.org/10.1155/2016/5012341.
Diao X, Deng P, Xie C, Li X, Zhong D, Zhang Y, et al. Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans: the role of cytochrome P450s and alcohol dehydrogenase in biotransformation. Drug Metab Dispos. 2013;41(2):430–44. https://doi.org/10.1124/dmd.112.049684.
Deng P, You T, Chen X, Yuan T, Huang H, Zhong D. Identification of amiodarone metabolites in human bile by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry. Drug Metab Dispos. 2011;39(6):1058–69. https://doi.org/10.1124/dmd.110.037671.
Holm NB, Noble C, Linnet K. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite. Toxicol Lett. 2016;259:35–43. https://doi.org/10.1016/j.toxlet.2016.07.007.
Chimalakonda KC, Moran CL, Kennedy PD, Endres GW, Uzieblo A, Dobrowolski PJ, et al. Solid-phase extraction and quantitative measurement of omega and omega-1 metabolites of JWH-018 and JWH-073 in human urine. Anal Chem (Washington, DC, U S). 2011;83(16):6381–8. https://doi.org/10.1021/ac201377m.
Castaneto MS, Scheidweiler KB, Gandhi A, Wohlfarth A, Klette KL, Martin TM, et al. Quantitative urine confirmatory testing for synthetic cannabinoids in randomly collected urine specimens. Drug Test Anal. 2015;7(6):483–93. https://doi.org/10.1002/dta.1709.
Moran CL, Le V-H, Chimalakonda KC, Smedley AL, Lackey FD, Owen SN, et al. Quantitative measurement of JWH-018 and JWH-073 metabolites excreted in human urine. Anal Chem (Washington, DC, U S). 2011;83(11):4228–36. https://doi.org/10.1021/ac2005636.
Clemett D, Goa KL. Celecoxib: a review of its use in osteoarthritis, rheumatoid arthritis and acute pain. Drugs. 2000;59(4):957–80.
Gong L, Thorn CF, Bertagnolli MM, Grosser T, Altman RB, Klein TE. Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22(4):310–8. https://doi.org/10.1097/FPC.0b013e32834f94cb.
Paulson SK, Hribar JD, Liu NWK, Hajdu E, Bible RH Jr, Piergies A, et al. Metabolism and excretion of [14C]celecoxib in healthy male volunteers. Drug Metab Dispos. 2000;28(3):308–14.
Sandberg M, Yasar U, Stroemberg P, Hoeoeg J-O, Eliasson E. Oxidation of celecoxib by polymorphic cytochrome P450 2C9 and alcohol dehydrogenase. Br J Clin Pharmacol. 2002;54(4):423–9. https://doi.org/10.1046/j.1365-2125.2002.01660.x.
de Jonge ME, Huitema ADR, Rodenhuis S, Beijnen JH. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet. 2005;44(11):1135–64. https://doi.org/10.2165/00003088-200544110-00003.
Breda M, Strolin Benedetti M, Bani M, Pellizzoni C, Poggesi I, Brianceschi G, et al. Effect of rifabutin on ethambutol pharmacokinetics in healthy volunteers. Pharmacol Res. 1999;40(4):351–6. https://doi.org/10.1006/phrs.1999.0526.
Peets EA, Sweeney WM, Place VA, Buyske DA. The absorption, excretion, and metabolic fate of ethambutol in man. Am Rev Respirat Diseases. 1965;91(1):51–8.
Peets EA. An effect of ethambutol, 2,2′-(ethylenediimino)di-l-butanol, on the structure and activity of alcohol dehydrogenase. Nature (London, U K). 1965;205(4968):241–2. https://doi.org/10.1038/205241a0.
Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev. 2004;36(3–4):511–29. https://doi.org/10.1081/DMR-200033441.
Hurley TD, Edenberg HJ, Li T-K. The pharmacogenomics of alcoholism. In: Licinio J, Wong M-L, editors. Pharmacogenomics: the search for individualized therapies. Weinheim: Wiley-VCH; 2002. p. 417–41.
Takeshita T, Mao X-Q, Morimoto K. The contribution of polymorphism in the alcohol dehydrogenase β subunit to alcohol sensitivity in a Japanese population. Hum Genet. 1996;97(4):409–13. https://doi.org/10.1007/BF02267057.
Garcia-Martin E, Martinez C, Serrador M, Alonso-Navarro H, Navacerrada F, Agundez JAG, et al. Alcohol dehydrogenase 2 genotype and risk for migraine. Headache. 2010;50(1):85–91.
Walters RK, Adams MJ, Adkins AE, Aliev F, Bacanu S-A, Batzler A, et al. Trans-ancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. bioRxiv, Genet. 2018:1–34. https://doi.org/10.1101/257311.
Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 2008;4(6):697–720. https://doi.org/10.1517/17425255.4.6.697.
Setshedi M, Wands JR. Monte SMdl. Acetaldehyde adducts in alcoholic liver disease. Oxidative Med Cell Longev. 2010;3(3):178–85.
Leppik IE, Dreifuss FE, Pledger GW, Graves NM, Santilli N, Drury I, et al. Felbamate for partial seizures: results of a controlled clinical trial. Neurology. 1991;41(11):1785–9.
Thakkar K, Billa G, Rane J, Chudasama H, Goswami S, Shah R. The rise and fall of felbamate as a treatment for partial epilepsy - aplastic anemia and hepatic failure to blame? Expert Rev Neurother. 2015;15(12):1373–5. https://doi.org/10.1586/14737175.2015.1113874.
Dieckhaus CM, Miller TA, Sofia RD, Macdonald TL. A mechanistic approach to understanding species differences in felbamate bioactivation: relevance to drug-induced idiosyncratic reactions. Drug Metab Dispos. 2000;28(7):814–22.
Foti RS, Dalvie DK. Cytochrome P450 and non-cytochrome P450 oxidative metabolism: contributions to the pharmacokinetics, safety, and efficacy of xenobiotics. Drug Metab Dispos. 2016;44(8):1229–45. https://doi.org/10.1124/dmd.116.071753.
Strolin Benedetti M, Whomsley R, Baltes E. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol. 2006;2(6):895–921. https://doi.org/10.1517/17425255.2.6.895.
Ma S, Takahashi RH, Ma Y, Bobba S, Zhang D, Khojasteh SC. Non-CYP drug metabolizing enzymes and their reactions. In: Pearson P, Wienkers LC, editors. Handbook of drug metabolism. 3rd ed. Boca Raton: CRC Press; 2019.
Thompson CD, Kinter MT, Macdonald TL. Synthesis and in vitro reactivity of 3-carbamoyl-2-phenylpropionaldehyde and 2-phenylpropenal: putative reactive metabolites of Felbamate. Chem Res Toxicol. 1996;9(8):1225–9. https://doi.org/10.1021/TX9601566.
Miura M, Ohkubo T. Identification of human cytochrome P450 enzymes involved in the major metabolic pathway of fluvoxamine. Xenobiotica. 2007;37(2):169–79. https://doi.org/10.1080/00498250600718464.
Whomsley R, Strolin Benedetti M, Espie P, Usuki E, Wolff A, Baltes E. The conversion of hydroxyzine to cetirizine is mediated by alcohol dehydrogenase. Drug Metab Rev. 2005;37(Suppl. 2):390–1.
Wermuth CG. Analogues as a means of discovering new drugs. In: Fischer J, Ganellin CR, editors. Analogue-based drug discovery Weinheim. Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2006. p. 3–23.
Simons FER, Simons KJ. H1 antihistamines: current status and future directions. World Allergy Organ J. 2008;1(9):145–55.
Obradovic T, Dobson GG, Shingaki T, Kungu T, Hidalgo IJ. Assessment of the first and second generation antihistamines brain penetration and role of P-glycoprotein. Pharm Res. 2007;24(2):318–27. https://doi.org/10.1007/s11095-006-9149-4.
Markham A, Elkinson S. Luseogliflozin: first global approval. Drugs. 2014;74(8):945–50. https://doi.org/10.1007/s40265-014-0230-8.
Sasaki T, Seino Y, Fukatsu A, Sakai S, Samukawa Y. Safety, pharmacokinetics, and pharmacodynamics of single and multiple Luseogliflozin dosing in healthy Japanese males: a randomized, single-blind, Placebo-Controlled Trial. Adv Ther. 2014;31(3):345–61. https://doi.org/10.1007/s12325-014-0102-3.
Miyata A, Hasegawa M, Hachiuma K, Mori H, Horiuchi N, Mizuno-Yasuhira A, et al. Metabolite profiling and enzyme reaction phenotyping of luseogliflozin, a sodium-glucose cotransporter 2 inhibitor, in humans. Xenobiotica. 2017;47(4):332–45. https://doi.org/10.1080/00498254.2016.1193263.
Seino Y. Luseogliflozin for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2014;15(18):2741–9.
Samukawa Y, Sata M, Furihata K, Ito T, Ueda N, Ochiai H, et al. Luseogliflozin, an SGLT2 inhibitor, in Japanese patients with mild/moderate hepatic impairment: a pharmacokinetic study. Clin Pharmacol Drug Dev. 2017;6(5):439–47. https://doi.org/10.1002/cpdd.364.
Webster R, Didier E, Harris P, Siegel N, Stadler J, Tilbury L, et al. PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos. 2007;35(1):9–16. https://doi.org/10.1124/dmd.106.012419.
Herold DA, Keil K, Bruns DE. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem Pharmacol. 1989;38(1):73–6. https://doi.org/10.1016/0006-2952(89)90151-2.
Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8. https://doi.org/10.1016/S1359-6446(05)03575-0.
Roy AB, Curtis CG, Powell GM. The metabolic sulphation of polyethyleneglycols by isolated perfused rat and guinea-pig livers. Xenobiotica. 1987;17(6):725–32.
Roy AB, Curtis CG, Powell GM. The inhibition by chlorate of the sulphation of polyethyleneglycol in the isolated perfused guinea pig liver. Xenobiotica. 1988;18(9):1049–55.
Nishiya Y, Nakai D, Urasaki Y, Takakusa H, Ohsuki S, Iwano Y, et al. Stereoselective hydroxylation by CYP2C19 and oxidation by ADH4 in the in vitro metabolism of tivantinib. Xenobiotica. 2016;46(11):967–76. https://doi.org/10.3109/00498254.2016.1144896.
Murai T, Takakusa H, Nakai D, Kamiyama E, Taira T, Kimura T, et al. Metabolism and disposition of [(14)C]tivantinib after oral administration to humans, dogs and rats. Xenobiotica. 2014;44(11):996–1008.
Lee S-L, Shih H-T, Chi Y-C, Li Y-P, Yin S-J. Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole. Chem Biol Interact. 2011;191(1–3):26–31. https://doi.org/10.1016/j.cbi.2010.12.005.
Newbould BB. The future of drug discovery. In: Walker BC, Walker SR, editors. Trends and changes in drug discovery and development. Hingham: Kluwer Academic Publishers; 1988. p. 109.
Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998;45(6):525–38.
Thomas RC, Ikeda GJ. The metabolic fate of tolbutamide in man and in the rat. J Med Chem. 1966;9(4):507–10. https://doi.org/10.1021/jm00322a014.
Lai C-L, Li Y-P, Liu C-M, Hsieh H-S, Yin S-J. Inhibition of human alcohol and aldehyde dehydrogenases by cimetidine and assessment of its effects on ethanol metabolism. Chem Biol Interact. 2013;202(1–3):275–82. https://doi.org/10.1016/j.cbi.2012.11.016.
Schindler JF, Berst KB, Plapp BV. Inhibition of human alcohol dehydrogenases by Formamides. J Med Chem. 1998;41(10):1696–701. https://doi.org/10.1021/JM9707380.
Hellgren M, Carlsson J, Oestberg LJ, Staab CA, Persson B, Hoeoeg J-O. Enrichment of ligands with molecular dockings and subsequent characterization for human alcohol dehydrogenase 3. Cell Mol Life Sci. 2010;67(17):3005–15. https://doi.org/10.1007/s00018-010-0370-2.
Staab CA, Hellgren M, Grafstroem RC, Hoeoeg J-O. Medium-chain fatty acids and glutathione derivatives as inhibitors of S-nitrosoglutathione reduction mediated by alcohol dehydrogenase 3. Chem Biol Interact. 2009;180(1):113–8. https://doi.org/10.1016/j.cbi.2009.01.008.
Xie PT, Hurley TD. Methionine-141 directly influences the binding of 4-methylpyrazole in human σσ alcohol dehydrogenase. Protein Sci. 1999;8(12):2639–44. https://doi.org/10.1110/ps.8.12.2639.
Zacny J, Zamakhshary M, Sketris I, Van Zanten SV. Systematic review: the efficacy of intermittent and on-demand therapy with histamine H2-receptor antagonists or proton pump inhibitors for gastro-oesophageal reflux disease patients. Aliment Pharmacol Ther. 2005;21(11):1299–312. https://doi.org/10.1111/j.1365-2036.2005.02490.x.
Stone CL, Hurley TD, Peggs CF, Kedishvili NY, Davis GJ, Thomasson HR, et al. Cimetidine inhibition of human gastric and liver alcohol dehydrogenase Isoenzymes: identification of inhibitor complexes by kinetics and molecular modeling. Biochemistry. 1995;34(12):4008–14. https://doi.org/10.1021/bi00012a019.
Battiston L, Tulissi P, Moretti M, Pozzato G. Lansoprazole and ethanol metabolism: comparison with omeprazole and cimetidine. Pharmacol Toxicol (Copenhagen). 1997;81(6):247–52.
Pozzato G, Franzin F, Moretti M, Lachin T, Benedetti G, Sablich R, et al. Effects of omeprazole on ethanol metabolism: an in vitro and in vivo rat and human study. Pharmacol Res. 1994;29(1):47–58. https://doi.org/10.1016/1043-6618(94)80097-9.
Lenz D, Juebner M, Bender K, Wintermeyer A, Beike J, Rothschild MA, et al. Inhibition of 1,4-butanediol metabolism in human liver in vitro. Naunyn Schmiedeberg's Arch Pharmacol. 2011;383(6):647–54. https://doi.org/10.1007/s00210-011-0627-9.
Ramaswamy S, Scholze M, Plapp BV. Binding of Formamides to liver alcohol dehydrogenase. Biochemistry. 1997;36(12):3522–7. https://doi.org/10.1021/BI962491Z.
Venkataramaiah TH, Plapp BV. Formamides mimic aldehydes and inhibit liver alcohol dehydrogenases and ethanol metabolism. J Biol Chem. 2003;278(38):36699–706. https://doi.org/10.1074/jbc.M305419200.
Langhi C, Pedraz-Cuesta E, Haro D, Marrero PF, Rodriguez JC. Regulation of human class I alcohol dehydrogenases by bile acids. J Lipid Res. 2013;54(9):2475–84. https://doi.org/10.1194/jlr.M039404.
Potter JJ, Cheneval D, Dang CV, Resar LMS, Mezey E, Yang VW. The upstream stimulatory factor binds to and activates the promoter of the rat class I alcohol dehydrogenase gene. J Biol Chem. 1991;266(23):15457–63.
Stewart MJ, McBride MS, Winter LA, Duester G. Promoters for the human alcohol dehydrogenase genes ADH1, ADH2, and ADH3: interaction of CCAAT/enhancer-binding protein with elements flanking the ADH2 TATA box. Gene. 1990;90(2):271–9. https://doi.org/10.1016/0378-1119(90)90190-3.
Edenberg HJ. Regulation of the mammalian alcohol dehydrogenase genes. Prog Nucleic Acid Res Mol Biol. 2000;64:295–341.
Van Ooij C, Snyder RC, Paeper BW, Duester G. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein α, liver activator protein, and D-element-binding protein. Mol Cell Biol. 1992;12(7):3023–31. https://doi.org/10.1128/MCB.12.7.3023.
Jiang Y, Zhang T, Kusumanchi P, Han S, Yang Z, Liangpunsakul S, et al. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines. 2020;8(3).
Su J-S, Tsai T-F, Chang H-M, Chao K-M, Su T-S, Tsai S-F. Distant HNF1 site as a master control for the human class I alcohol dehydrogenase gene expression. J Biol Chem. 2006;281(29):19809–21. https://doi.org/10.1074/jbc.M603638200.
Di L. Reaction phenotyping to assess victim drug-drug interaction risks. Expert Opin Drug Discovery. 2017;12(11):1105–15. https://doi.org/10.1080/17460441.2017.1367280.
Stromberg P, Svensson S, Hedberg JJ, Nordling E, Hoog JO. Identification and characterisation of two allelic forms of human alcohol dehydrogenase 2. Cell Mol Life Sci. 2002;59(3):552–9.
Buecher T, Brauser B, Conze A, Klein F, Langguth O, Sies H. State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate-pyruvate in hemoglobin-free perfused rat liver. Eur J Biochem. 1972;27(2):301–17. https://doi.org/10.1111/j.1432-1033.1972.tb01840.x.
Zorzano A, Herrera E. Differences in kinetic characteristics and in sensitivity to inhibitors between human and rat liver alcohol dehydrogenase and aldehyde dehydrogenase. Gen Pharmacol. 1990;21(5):697–702. https://doi.org/10.1016/0306-3623(90)91020-R.
Palacharla VRC, Chunduru P, Ajjala DR, Bhyrapuneni G, Nirogi R, Li AP. Development and validation of a higher-throughput cytochrome P450 inhibition assay with the novel cofactor-supplemented permeabilized cryopreserved human hepatocytes (MetMax human hepatocytes). Drug Metab Dispos. 2019;47(10):1032–9. https://doi.org/10.1124/dmd.119.088237.
Nirogi R, Palacharla RC, Uthukam V, Manoharan A, Srikakolapu SR, Kalaikadhiban I, et al. Chemical inhibitors of CYP450 enzymes in liver microsomes: combining selectivity and unbound fractions to guide selection of appropriate concentration in phenotyping assays. Xenobiotica. 2015;45(2):95–106. https://doi.org/10.3109/00498254.2014.945196.
Draper AJ, Madan A, Parkinson A. Inhibition of coumarin 7-hydroxylase activity in human liver microsomes. Arch Biochem Biophys. 1997;341(1):47–61. https://doi.org/10.1006/abbi.1997.9964.
Moody GC, Griffin SJ, Mather AN, McGinnity DF, Riley RJ. Fully automated analysis of activities catalysed by the major human liver cytochrome P450 (CYP) enzymes: assessment of human CYP inhibition potential. Xenobiotica. 1999;29(1):53–75.
Acknowledgments
The authors greatly appreciate the help of Mr. John C. Murch in editing the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Guest Editors: Diane Burgess, Marilyn Morris and Meena Subramanyam
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1
(DOCX 300 kb)
Rights and permissions
About this article
Cite this article
Di, L., Balesano, A., Jordan, S. et al. The Role of Alcohol Dehydrogenase in Drug Metabolism: Beyond Ethanol Oxidation. AAPS J 23, 20 (2021). https://doi.org/10.1208/s12248-020-00536-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1208/s12248-020-00536-y