iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1145/355769.355775
A Fortran Multiple-Precision Arithmetic Package | ACM Transactions on Mathematical Software skip to main content
article
Free access

A Fortran Multiple-Precision Arithmetic Package

Published: 01 March 1978 Publication History
First page of PDF

References

[1]
ABERTH, O. /ix precise numerical analysis program. Comm. ACM 17, 9 (Sept. 1974), 509-513.
[2]
ABRAMOWlTZ, M, AND STEGUN, I.A. Handbook of Mathematwal Function,s. Nat. Bur. of Standards, Washington, D.C., 1964.
[3]
American National Standard Fortran (ANSI X3.9-1966), Amer. Nat. Standards Inst., New York, 1966. See also Comm. ACM 12, 5 (May 1969), 289-294 and Comm. ACM 1~, 10 (Oct. 1971), 628-642.
[4]
BAE~, R M., AND REDLICH, M.G. Multiple-precision arithmetic and the exact calculation of the 3-j, 6-j, and 9-3 symbols. Comm. ACM 7, 11 (Nov. 1964), 657-659.
[5]
BEYER, W.A., AND WATERMAN, M.S. Decimals and partial quotients of Euler's constant and ln(2). Submitted to Math. Comput.
[6]
BEYER, W.A., AND WATERMAN, M S. Error analysls of a computation of Euler's constant. Math. Comput. 28 (April 1974), 599-604.
[7]
BLUM, B.I. An extended arithmetic package. Comm. ACM 8, (May 1965), 318-320.
[8]
BOGEN, R. MACSYMA Reference Manual, Vet 8. Mathlab. Group, Project MAC, M.I.T., Cambridge, Mass., 1975.
[9]
BRENT, R.P. Algorithm 524. MP, A Fortran multzple-precision arithmetic package. ACM Trans. Math. Software ~, 1 (March 1978), 71-81.
[10]
BRENT, R P. Computation of the continued fraction for Euler's constant. Math. Compul. 81 (JuIy 1977), 771-777.
[11]
BRI!~NT, R.P. Fast multiple-precision evaluation of elementary functions, d. ACM 23, 2 (April 1976), 242-251.
[12]
BRENT, R.P. Knuth's constants to 1000 decimal and 1100 octal places. Tech. Rep. 47, Comptr. Ctr., Australian National U., Canberra, Sept. 1975.
[13]
BRENT, R.P. MP users guide Tech Rep. 54, Comptr. Ctr., Australian National U., Canberra, Sept. 1976.
[14]
BRENT, R.P. Multiple-precision zero-finding methods and the complexity of elementary function evaluation. In Analytic Computational Complexity, J.F. Traub, Ed., Academic Press, New York, 1976, pp. 151-176.
[15]
BR~NT, R.P. On the precision attainable with various floating-point number systems. IEEE Trans. Comptrs. C-22 (June 1973), 601-607.
[16]
BRENT, R.P. Some high-order zero-finding methods using almost orthogonal polynomials. J. Auslral Math. Soc. Series B, 19 (1975), 1-29.
[17]
BRENT, R.P. The complexity of multiple-precision arithmetic. In Complexity of Compuational Problem Solving, R S. Anderssen and R.P. Brent, Eds., U. of Queensland Press, Brisbane, 1976, pp. 126-165.
[18]
COLLINS, G E. PM, A system for polynomial manipulation. Comm. ACM 9, 8 (Aug. 1966), 578-589.
[19]
DECKER, T.J. A floating-point technique for extending the available precision. Numer. Math. 18 (1971), 224-242.
[20]
EHRMAN, J.R. A multiple-precision floating-point arithmetic package for System/360. Rep. CGTM 18, Stanford Linear Accelerator Ctr., Stanford, Calif., 1967.
[21]
GA~ANT, D. C., AND BYRD, P.F. High accuracy gamma function values for some rational arguments. Math Comput. 22 (1968), 885-887
[22]
GAUTSCHI, W Algorithm 236. Bessel functions of the first kind. Comm. ACM 7, 8 (Aug. 1964), 479-480.
[23]
GOSPER, R.W Acceleration of series. Memo 304, AI Lab, M.I.T., Cambridge, Mass., March 1974.
[24]
HART, J.F., ET AL. Computer Approx~matwns. Wiley, New York, 1968.
[25]
I-IEttMITE, C. Oeuvres de Charles Hermzte, Vol. 2. Gauthier-ViUars, Paris, 1908, pp. 38-82.
[26]
HILL, I D. Algorithm 34, Procedures for the basic arithmetical operations in multiplelength working. Computer J II (Aug. 1968), 232-235.
[27]
HULL, T.E., AND HOFBAUER, J J. Language facilities for multiple-precision floating-point computation. Dept. Comptr. Sci, U. of Toronto, Toronto, Ont., 1974.
[28]
JONES, H.S.P. Algorithm 72. Multiple integer arithmetic procedures in Algol. Computer J. 15 (1972), 281-282.
[29]
~ARATSUBA, h., AND OFMAN, Y. Multiplication of multidigit numbers on automata. Dokl. Akad. Nauk SSSR 146 (1962), 293-394 (m Russian).
[30]
KERNIGHAN, B.W, AND PLAUGER, P.J. The Elements of Programnting Style. McGraw-Hill, New York, 1974.
[31]
KNUTH, D.E. Euler's constant to 1271 places. Math. Comput. I6 (1962), 275-281.
[32]
KNVTH, D.E. The Art of Computer Programming, Vol 2" Seminumerical Algorithms Addison Wesley, Reading, Mass, 1969
[33]
KUKI, H, AND CODY, W.J. A statistical study of the accuracy of floating-point number systems Comm. ACM 16, 4 (April 1973), 223-230.
[34]
LAWSON, C L Basic Q-precision arithmetic subroutines including input and output. Tech Memo 170, Jet Propulsion Lab., Pasadena, Cahf, Oct. 1967.
[35]
LAWSON, C.L. Q-precision subroutines for the elementary functmns and aids for testing single-precision and double-precision function subroutines. Tech. Memo 188, Jet Propulsion Lab, Pasadena, Calif., April 1968.
[36]
L.~WSON, C L Summary of Q-precision subroutines as revised in October 1968. Tech Memo 211, Jet Propulsion Lab, Pasadena, Calif., Jan 1969.
[37]
LEHMER, D.H. Tables to many places of decimals. Math. Tables Aids Comput. 1 (1943), 30-31 (now Math Comput.).
[38]
MAXIMON, L.C Fortran programs for arbitrary precision arithmetic. Rep. 10563, Nat. Bur. of Standards, Washington, D.C., April 1971.
[39]
RAMANUJAN, S Collected Papers of Srinwasa Ramar~u3an Cambridge U. Press, Cambridge, 1927, pp 23-39.
[40]
REID, C E, AND KNOBLE, H D. A multiple precision arithmetic package for the IBM 360/370 systems. SHARE Program Library, March 1974.
[41]
RYDER, B.G The PFORT verffier Software--Practice and Experience ~ (1974), 359-377
[42]
SALAMIS, E. Computation of ~r using arithmetic-geometrm mean. Math. Comput. SO (July 1976), 565-570.
[43]
SCHONFELDER, J.L. The production of special function routines for a multi-machine library. Soft~xare--Pract~ce and E~pemence 6 (lC~7~), 71-82.
[44]
SCHONFELDER, J L The testing of mathematical function software in a multi-machine enwronment. Tech. Rep. 107, Basser Dept Comptr. Scl., U. of Sydney, Sydney, Australm, Nov. 1975.
[45]
SCHONFELDER, J.L., AND THOMASON, J.T. Applications support by direct language extension-an arbitrary precision arithmetic facility m Algol 68 Computer Ctr., U. of B~rmmgham, Birmingham, 1975.
[46]
SC~ONHXGE, A, AND STRASSEN, V Schnelle Multiplikation grosser Zahlen. Computing 7 (1971), 281-292.
[47]
SPIRA, R. Fortran multiple precision, Pt. 1, 2. Dept. of Math., Michigan State U., East Lansing, M1ch, 1973.
[48]
SWEENEY, D.W. On the computation of Euler's constant. Math. Comput. 17 (1963), 170-178.
[49]
TIENARt, M., AND SUOKONAUTIO, V A set of procedures making real arithmetic of unlimited accuracy possible within Algol 60. BIT 6 (1966), 322-338.
[50]
WYATT, W.W., LOZIER, D.W., AND ORSER, D.J. A portable extended precision arithmetic package and l~brary with Fortran precompiler. Nat Bur. of Standards, Washington, D C, 1975; Trans. Math Software 2, 3 (Sept. 1976), 209-231.
[51]
CRARY, F.D. Multiple precision arithmetic design with an implementation on the Univac 1108. Tech. Summary Rep. 1123, Mathematics Research Center, U. of Wisconsin, Madison, Wis., 1971.
[52]
CRARY, F.D. The Augment precompiler, Pt. I--User information. Tech. Summary Rep. 1469, Mathematics Research Center, U of Wisconsin, Madison, Wis. 1974 (revised April 1976)

Cited By

View all
  • (2023)A Generalized Series Expansion of the Arctangent Function Based on the Enhanced Midpoint IntegrationAppliedMath10.3390/appliedmath30200203:2(395-405)Online publication date: 17-Apr-2023
  • (2021)Hypofluorous acid (HOF): A molecule with a rare (1,-2,-1) vibrational resonance and (8,3,2) polyad structure revealed by Padé-Hermite resummation of divergent Rayleigh-Schrödinger perturbation theory seriesJournal of Quantitative Spectroscopy and Radiative Transfer10.1016/j.jqsrt.2021.107620268(107620)Online publication date: Jul-2021
  • (2018)Extending the PrecisionHandbook of Floating-Point Arithmetic10.1007/978-3-319-76526-6_14(513-552)Online publication date: 3-May-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 4, Issue 1
March 1978
96 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/355769
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 March 1978
Published in TOMS Volume 4, Issue 1

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)145
  • Downloads (Last 6 weeks)25
Reflects downloads up to 28 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)A Generalized Series Expansion of the Arctangent Function Based on the Enhanced Midpoint IntegrationAppliedMath10.3390/appliedmath30200203:2(395-405)Online publication date: 17-Apr-2023
  • (2021)Hypofluorous acid (HOF): A molecule with a rare (1,-2,-1) vibrational resonance and (8,3,2) polyad structure revealed by Padé-Hermite resummation of divergent Rayleigh-Schrödinger perturbation theory seriesJournal of Quantitative Spectroscopy and Radiative Transfer10.1016/j.jqsrt.2021.107620268(107620)Online publication date: Jul-2021
  • (2018)Extending the PrecisionHandbook of Floating-Point Arithmetic10.1007/978-3-319-76526-6_14(513-552)Online publication date: 3-May-2018
  • (2017)Multiple Precision Floating-Point Arithmetic on SIMD Processors2017 IEEE 24th Symposium on Computer Arithmetic (ARITH)10.1109/ARITH.2017.12(2-9)Online publication date: Jul-2017
  • (2017)The reliable solution and computation time of variable parameters logistic modelTheoretical and Applied Climatology10.1007/s00704-017-2136-3132:3-4(851-855)Online publication date: 27-Apr-2017
  • (2016)Accurate, validated and fast evaluation of elementary symmetric functions and its applicationApplied Mathematics and Computation10.1016/j.amc.2015.08.134273:C(1160-1178)Online publication date: 15-Jan-2016
  • (2015)Faster FFTs in Medium PrecisionProceedings of the 2015 IEEE 22nd Symposium on Computer Arithmetic10.1109/ARITH.2015.10(75-82)Online publication date: 22-Jun-2015
  • (2015)MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONSThe Astrophysical Journal Supplement Series10.1088/0067-0049/220/1/15220:1(15)Online publication date: 21-Sep-2015
  • (2015)Comparison of algorithms for Doppler broadening pointwise tabulated cross sectionsAnnals of Nuclear Energy10.1016/j.anucene.2014.08.04675(358-364)Online publication date: Jan-2015
  • (2014)Validated evaluation of special mathematical functionsScience of Computer Programming10.1016/j.scico.2013.05.00690:PA(2-20)Online publication date: 15-Sep-2014
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media