Introduction
Healthcare systems are under increasing financial pressure from diabetes care costs.1 The global prevalence of diabetes is increasing and consequently expenditure on diabetes is projected to rise substantially in the next two decades.1 In the UK, the cost associated with diabetes was approximately £23.7 billion in 2010/2011, and is estimated to rise to £39.8 billion by 2035/2036.2
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of pancreatic beta-cells, causing insulin deficiency that prevents the absorption and utilization of glucose,3 and typically presents in children and adolescents.4 In this patient population, insulin therapy is required immediately following diagnosis.4 An appreciable burden on healthcare services arises from acute complications of diabetes—namely hypoglycemia, hyperglycemia and diabetic ketoacidosis (DKA).5–7 Hypoglycemia results from relative insulin excess and severe hypoglycemia, which can lead to coma, seizures and even death, requires urgent intervention to prevent serious harm and results in increased healthcare resource use—both immediately, and in the aftermath.6 Conversely, relative insulin deficiency leads to hyperglycemia and lipolysis; if unchecked, it may progress to the formation of blood ketones (ketosis) and ultimately, DKA.7 Both ketosis events and DKA are associated with high healthcare resource costs arising from doctor visits, ambulance use and hospitalization, including the need for intensive care.5 7 Accordingly, a key goal of insulin therapy is to maintain optimal blood glucose levels and prevent the development of these acute diabetes-related complications.8 9 New-generation long-acting insulin analogs with improved pharmacokinetic and pharmacodynamic profiles have been developed, and these have the potential to reduce both hypoglycemia and ketosis.10
One such new-generation long-acting insulin analog, insulin degludec (degludec), is a basal insulin with a duration of action exceeding 42 hours at steady state and a flat and stable glucose-lowering effect.11–13 The clinical benefits of degludec versus insulin detemir (IDet) in children and adolescents (1–17 years of age) with T1D were investigated in BEGIN YOUNG 1. This 26-week, phase IIIb, open-label, multinational, parallel-group, randomized, treat-to-target, non-inferiority trial (with a 26-week extension) compared the efficacy and safety of degludec once daily with that of IDet once daily or twice daily, both in combination with mealtime insulin aspart (IAsp).14 In this patient population, at equivalent glycemic control, degludec was associated with a similar rate of hypoglycemia and significantly lower rates of hyperglycemia with ketosis and a 30% lower basal insulin dose, compared with IDet.14
With increasing requirements from payers and decision makers to use resources wisely, it is important to assess which treatments provide clinical benefits and consider the best value for the resources used. Therefore, a robust economic evaluation is required based on clinical data. The aim of the present study was to evaluate the annual costs of degludec versus IDet as basal insulin therapy in children and adolescents with T1D, from the perspective of the UK National Health Service (NHS), using data from the BEGIN YOUNG 1 trial.