iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1134/S0202289317030069
A cosmological inflationary model using optimal control | Gravitation and Cosmology Skip to main content
Log in

A cosmological inflationary model using optimal control

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Cosmological inflationary models based on a self-interacting scalar field are considered. A slow-roll model is formulated as an optimal control problem. Application of Pontryagin’s maximum principle leads to an exact solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Guth, “Inflationary universe: A possible solution to the horizon and flatness problems,” Phys. Rev. D 23, 347–356 (1981).

    Article  ADS  Google Scholar 

  2. J. D. Barrow and A. H. Graham, “Singular Inflation,” Phys. Rev. D 91, 083513 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Parsons and J. D. Barrow, “Generalised scalar field potentials and inflation,” Phys. Rev. D 51, 6757–6763 (1995).

    Article  ADS  Google Scholar 

  4. S. V. Chervon, V. M. Zhuravlev, and V. K. Shchigolev, “New exact solutions in standard inflationary models,” Phys. Lett. B 398, 269–273 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. D. Barrow, “Exact inflationary universes with potential minima,” Phys. Rev. D 49, 3055–3058 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  6. C. E. Rhoades, and R. Ruffini, “Maximum mass of a neutron star,” Phys. Rev. Lett. 32, 324–327 (1974).

    Article  ADS  Google Scholar 

  7. V. Kalogera and G. Baym, “The maximum mass of a neutron star,” Astrophys. J. Lett. 470, L61–L64 (1996).

    Article  ADS  Google Scholar 

  8. S. Haggag and J. L. Safko, “The condition of hydrostatic equilibrium of stellar models using optimal control,” Astroph. Space Sci. 283, 369–373 (2003).

    Article  ADS  MATH  Google Scholar 

  9. E. C. D. Pope, “Investigating a model of optimized active galactic nucleus feedback,” Mon. Not. R. Astron. Soc. 414, 3344–3349 (2011).

    Article  ADS  Google Scholar 

  10. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, TheMathematical Theory of Control Processes (John Wiley and Sons, New York, 1962).

    Google Scholar 

  11. B. D. Craven, Control and Optimization (Chapman and Hall, London, 1995).

    Book  MATH  Google Scholar 

  12. V. M. Zhuravlev, S. V. Chervon, and V. K. Shchigolev, “New classes of exact solutions in inflationary cosmology,” JETP 87, 223–228 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moutaz Ramadan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haggag, S., Desokey, F. & Ramadan, M. A cosmological inflationary model using optimal control. Gravit. Cosmol. 23, 236–239 (2017). https://doi.org/10.1134/S0202289317030069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289317030069

Navigation