iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1134/S0005117916070079
Algorithm for the discrete Weber’s problem with an accuracy estimate | Automation and Remote Control Skip to main content
Log in

Algorithm for the discrete Weber’s problem with an accuracy estimate

  • System Analysis and Operations Research
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a relaxation of the quadratic assignment problem without the constraint on the number of objects assigned to a specific position. This problem is N P-hard in the general case. To solve the problem, we propose a polynomial algorithm with guaranteed posterior accuracy estimate; we distinguish a class of problems with special assignment cost functions where the algorithm is 2-approximate. We show that if the graph in question contains one simple loop, and the set of assignment positions is a metric space, the proposed algorithm is 2-approximate and guaranteed to be asymptotically exact. We conduct a computational experiment in order to analyze the algorithm’s errors and evaluate its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zabudskii, G.G. and Lagzdin, A.Yu., Dynamic Programming for the Quadratic Assignment Problem on Trees, Autom. Remote Control, 2012, vol. 73, no. 2, pp. 336–348.

    Article  MathSciNet  MATH  Google Scholar 

  2. Sergeev, S.I., The Quadratic Assignment Problem. I. New Lower Bounds in a Dual Assignment Scheme, Autom. Remote Control, 1999, vol. 60, no. 8, pp. 1162–1178.

    MathSciNet  MATH  Google Scholar 

  3. Sergeev, S.I., The Quadratic Assignment Problem. II. Refined Gilmore–Lawler Algorithm, Autom. Remote Control, 1999, vol. 60, no. 9, pp. 1326–1331.

    MATH  Google Scholar 

  4. Muldoon, F., Polyhedral Approximations of Quadratic Semi-Assignment Problems, Disjunctive Programs, and Base-2 Expansions of Integer Variables, Clemson: Clemson Univ., 2012.

    Google Scholar 

  5. Saito, H. and Fujie, T., A Study of the Quadratic Semi-Assignment Polytope, Discret. Optim., 2009, vol. 6, pp. 37–50.

    Article  MathSciNet  MATH  Google Scholar 

  6. Voss, S., Heuristics for Nonlinear Assignment Problems, Combinat. Optim., 2000, vol. 7, pp. 175–215.

    Article  MathSciNet  MATH  Google Scholar 

  7. Malucelli, F., Quadratic Assignment Problems: Solution Methods and Applications, PhD Dissertation, University of Pisa, 1993.

    Google Scholar 

  8. Panyukov, A.V., Models and Methods for Construction and Identification Problems of Geometric Assignment, Doctoral (Phys.–Math.) Dissertation, Chelyabinsk, 1999.

    Google Scholar 

  9. Sahni, S. and Gonzalez, T., TP-complete Approximation Problems, ACM J., 1976, vol. 23, pp. 555–565.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zabudskii, G.G. and Filimonov, D.V., On Minimax and Minisum Assignment Problems on Networks, Proc. XII Baikal Int. Conf. “Optimization Methods and Their Applications,” Irkutsk: ISEM SORAN, 2001, pp. 150–155.

    Google Scholar 

  11. Panyukov, A.V. and Pelzwerger, B.V., Polynomial Algorithms to Finite Veber Problem for a Tree Network, J. Comput. Appl. Math., 1991, vol. 35, pp. 291–296.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bokhari, S.H., A Shortest Tree Algorithm for Optimal Assignments Across Space and Time in a Distributed Processor System, IEEE Trans. Software Eng., 1981, vol. SE-7(6), pp. 743–752.

    Google Scholar 

  13. Panyukov, A.V. and Shangin, R.E., An Exact Algorithm for Solving the Discrete Weber Problem for a k-Tree, Diskret. Anal. Issled. Oper., 2014, vol. 21, no. 3, pp. 64–75.

    MathSciNet  MATH  Google Scholar 

  14. Shangin, R.E., A Deterministic Algorithm for Solving the Weber Problem for an n-Sequentially Connected Chain, Diskret. Anal. Issled. Oper., 2013, vol. 20, no. 5, pp. 84–96.

    MathSciNet  MATH  Google Scholar 

  15. Stone, H.S., Multiprocessor Scheduling with the Aid of Network Flow Algorithms, IEEE Trans. Software Eng., 1977, vol. SE-3(1), pp. 85–93.

    Article  MathSciNet  MATH  Google Scholar 

  16. Burkard, E. and Pardalos, P., The Quadratic Assignment Problem, in andbook of Combinatorial Optimization, New York: Kluwer, 2000.

    Google Scholar 

  17. Malucelli, F., A Polynomially Solvable Class of the Quadratic Semi-Assignment Problems, Eur. J. Oper. Res., 1996, vol. 91, pp. 619–622.

    Article  MATH  Google Scholar 

  18. Malucelli, F. and Pretolani, D., Quadratic Semi-Assignment Problem on Structured Graphs, Ric. Oper., 1994, vol. 69, pp. 57–78.

    Google Scholar 

  19. Malucelli, F. and Pretolani, D., Lower Bounds for the Quadratic Semi-Assignment Problem, Eur. J. Oper. Res., 1995, vol. 83, pp. 365–375.

    Article  MATH  Google Scholar 

  20. Gallo, G., Tomasin, E.M., and Sorato, A.M., Lower Bounds for the Quadratic Semi-Assignment Problem, New Brunswick: Rutgers Univ., 1986.

    Google Scholar 

  21. Domschke, W., Schedule Synchronization for Public Transit Networks, ORSpektrum, 1989, no. 11, pp. 17–24.

    Google Scholar 

  22. Domschke,W., Forst, P., and Voss, S., Tabu Search Techniques for the Quadratic Semi-Assignment Problem, in New Directions for Operations Research in Manufacturing, Berlin: Springer, 1992, pp. 389–405.

    Google Scholar 

  23. Voss, S., Network Design Formulations in Schedule Synchronization, Computer-Aided Transit Scheduling, vol. 386 of Lecture Notes in Economics and Mathematical Systems, Berlin: Springer, 1992, pp. 137–152.

    Book  Google Scholar 

  24. Voss, S., Tabu Search: Applications and Prospects, in Network Optimization Problems, Du, D.-Z. and Pardalos, P., Eds., Singapore: World Scientific, 1993, pp. 333–353.

    Google Scholar 

  25. Roupin, F., On Approximating the Memory-Constrained Module Allocation Problem, Inform. Proc. Lett., 1997, vol. 61, pp. 205–208.

    Article  MathSciNet  MATH  Google Scholar 

  26. Prim, R.C., Shortest Connection Networks and Some Generalizations, Bell Syst. Technic. J., 1957, vol. 36, pp. 1389–1401.

    Article  Google Scholar 

  27. Kruskal, J.B., On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem, Proc. Am. Math. Soc., 1956, vol. 7, pp. 48–50.

    Article  MathSciNet  MATH  Google Scholar 

  28. Gimadi, E.Kh., Glebov, N.I., and Perepelitsa, V.A., Algorithms with Bounds for Discrete Optimization Problems, in Problemy Kibernetiki (Cybernetics Problems), Moscow: Nauka, 1975, vol. 31, pp. 35–42.

    MathSciNet  Google Scholar 

  29. Panyukov, A.V. and Shangin, R.E., Approximate Algorithms for Constructing a Minimal Spanning k- Tree, Proc. XII Russ. Sem. Control Problems VSPU-2014, Moscow, June 16–19, 2014, pp. 2338–2351, http://vspu2014ipuru/proceedings/vspu2014zip.

    Google Scholar 

  30. Shangin, R.E., Pardalos, P.M., and Panyukov, A.V., Heuristic Algorithms for Constructing a Minimal Spanning k-Tree, Proc. XVI Baikal Int. School–Seminar “Methods of Optimization and Their Applications,” Irkutsk: ISEM SORAN, p. 122.

  31. Shangin, R. and Pardalos, P., Heuristics for Minimum Spanning k-tree Problem, Procedia Comput. Sci., 2014, vol. 31, pp. 1074–1083.

    Article  Google Scholar 

  32. Shangin, R.E., Exact Algorithm for Solving Discrete Weber Problem for a Cycle, Prikl. Diskret. Mat., 2013, no. 4, pp. 96–102.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Panyukov.

Additional information

Original Russian Text © A.V. Panyukov, R.E. Shangin, 2016, published in Avtomatika i Telemekhanika, 2016, No. 7, pp. 103–112.

This paper was recommended for publication by P.Yu. Chebotarev, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyukov, A.V., Shangin, R.E. Algorithm for the discrete Weber’s problem with an accuracy estimate. Autom Remote Control 77, 1208–1215 (2016). https://doi.org/10.1134/S0005117916070079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916070079

Navigation