Abstract

Climbing robots offer advanced motion capabilities to perform inspection, manufacturing, or rescue tasks. Climbing requires the robot to generate adhering forces with the climbing surface. Dry adhesives present a category of adhesion that could be advantageous for climbing a variety of surfaces. Current literature shows climbing robots using dry adhesives typically exhibit minimal payloads and are considered useful for tasks involving lightweight sensors, such as surveillance. However, dry adhesives routinely demonstrate adhering pressures in the range of 20–50 kPa, suggesting that a small robot (3 × 30 cm footprint, for example) could theoretically have a significant payload (in the order of 18–45 kg). Existing designs demonstrate small payloads primarily because they fail to distribute the adhesion forces over the entire adhering region available to these robots. Further, existing design methods do not demonstrate scalability of payload-to-vehicle size but, in fact, indicate such robots are not scalable (Gorb et al., 2007, “Insects Did It First: A Micropatterned Adhesive Tape for Robotic Applications,” Bioinspir. Biomim., 2(4), pp. 117–125.). This paper presents a design procedure for track-type climbing robots that use dry adhesives to generate tractive forces and a passive suspension that distributes the climbing loads over the track in a preferred manner. This procedure simultaneously considers the behavior of both the adhesive material at the track-surface interface and the distribution of the adhesive forces over the full contact surface. The paper will demonstrate that dry-adhesive-based climbing robots can be designed to achieve high payloads and are scalable, thus enabling them to be used in applications previously thought to be impossible with dry adhesives.

References

1.
Kumar
,
P.
,
Hill
,
T. W.
,
Bryant
,
D. A.
, and
Canfield
,
S. L.
,
2011
, “
Modeling and Design of a Linkage-Based Suspension for Tracked-Type Climbing Mobile Robotic Systems
,”
Proceedings of the IDETC/CIE
,
Washington, DC
,
Aug. 28–31, 2011
, pp.
827
834
,
ASME DETC2011-48555
.
2.
Fremerey
,
M.
,
Gorb
,
S.
,
Heepe
,
L.
,
Kasper
,
D.
, and
Witte
,
H.
,
2011
, “
MaTBot: A Magneto-Adhesive Track Robot for the Inspection of Artificial Smooth Substrates
,”
International Symposium on Adaptive Motion of Animals and Machines
,
Awaji, Japan
,
Oct.11–14, 2011
, pp.
19
20
.
3.
Asbeck
,
A. T.
,
Kim
,
S.
,
Cutkosky
,
M. R.
,
Provancher
,
W. R.
, and
Lanzetta
,
M.
,
2006
, “
Scaling Hard Vertical Surfaces With Compliant Microspine Arrays
,”
Int. J. Rob. Res.
,
25
(
12
), pp.
1165
1179
. 10.1177/0278364906072511
4.
Desbiens
,
A. L.
, and
Cutkosky
,
M. R.
,
2009
, “
Landing and Perching on Vertical Surfaces With Microspines for Small Unmanned Air Vehicles
,”
J. Intell. Rob. Syst.
,
57
(
1–4
), pp.
313
327
.
5.
Pope
,
M. T.
,
Kimes
,
C. W.
,
Jiang
,
H.
,
Hawkes
,
E. W.
,
Kerst
,
C. F.
,
Estrada
,
M. A.
,
Roderick
,
W. R. T.
,
Han
,
A. K.
,
Christensen
,
D. L.
, and
Cutkosky
,
M. R.
,
2017
, “
A Multimodal Robot for Perching and Climbing on Vertical Outdoor Surfaces
,”
IEEE Trans. Rob.
,
33
(
1
), pp.
38
48
. 10.1109/TRO.2016.2623346
6.
Parness
,
A.
,
Frost
,
M.
,
Thatte
,
N.
, and
King
,
J. P.
,
2012
, “
Gravity-Independent Mobility and Drilling on Natural Rock Using Microspines
,”
IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18, 2012
, pp.
3437
3442
,
>IEEE 12836310
.
7.
Murphy
,
M. P.
,
Kute
,
C.
,
Mengüç
,
Y.
, and
Sitti
,
M.
,
2011
, “
Waalbot II: Adhesion Recovery and Improved Performance of a Climbing Robot Using Fibrillar Adhesives
,”
Int. J. Rob. Res.
,
30
(
1
), pp.
118
133
. 10.1177/0278364910382862
8.
Dharmawan
,
A.
,
Xavier
,
P.
,
Hariri
,
H.
,
Soh
,
G.
,
Baji
,
A.
,
Bouffanais
,
R.
,
Foong
,
S.
,
Low
,
H.
, and
Wood
,
K.
,
2019
, “
Design, Modeling, and Experimentation of a Bio-Inspired Miniature Climbing Robot With Bilayer Dry Adhesives
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020902
10.1115/1.4042457
9.
Unver
,
O.
,
Uneri
,
A.
,
Aydemir
,
A.
, and
Sitti
,
M.
,
2006
, “
Geckobot: A Gecko Inspired Climbing Robot Using Elastomer Adhesives
,”
IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19, 2006
, pp.
2329
2335
.
10.
Liu
,
Y.
,
Kim
,
H. G.
, and
Seo
,
T. W.
,
2016
, “
AnyClimb: A New Wall-Climbing Robotic Platform for Various Curvatures
,”
IEEE/ASME Trans. Mech.
,
21
(
4
), pp.
1812
1821
. 10.1109/TMECH.2016.2529664
11.
Unver
,
O.
, and
Sitti
,
M.
,
2010
, “
Tankbot: A Palm-Size, Tank-Like Climbing Robot Using Soft Elastomer Adhesive Treads
,”
Int. J. Rob. Res.
,
29
(
14
), pp.
1761
1777
. 10.1177/0278364910380759
12.
Powelson
,
M. W.
,
2018
, “
Innovative Manufacturing, Modeling, and Design of Dry Adhesives for Mobile Climbing Robots
,”
M.S. Thesis
,
Tennessee Technological University
,
Cookeville, TN
.
13.
Li
,
Y.
,
Krahn
,
J.
, and
Menon
,
C.
,
2016
, “
Bioinspired Dry Adhesive Materials and Their Application in Robotics: A Review
,”
J. Bionic Eng.
,
13
(
2
), pp.
181
199
. 10.1016/S1672-6529(16)60293-7
14.
Gorb
,
S.
,
Sinha
,
M.
,
Peressadko
,
A.
,
Daltorio
,
K. A.
, and
Quinn
,
R. D.
,
2007
, “
Insects Did It First: A Micropatterned Adhesive Tape for Robotic Applications
,”
Bioinspir. Biomim.
,
2
(
4
), pp.
117
125
. 10.1088/1748-3182/2/4/S01
15.
Unver
,
O.
, and
Sitti
,
M.
,
2010
, “
Flat Dry Elastomer Adhesives as Attachment Materials for Climbing Robots
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
131
141
. 10.1109/TRO.2009.2033628
16.
Canfield
,
S.
, and
Beard
,
J.
(
2010
). “
Tracked Climbing Machine With Compliant Suspension Apparatus
,”
United States of America
Patent US 8567536 B1,
Jan.
29
.
17.
Powelson
,
M. W.
, and
Canfield
,
S.
,
2017
, “
Design of Track-Based Climbing Robots Using Dry Adhesives
,”
Proceedings of the IDETC/CIE
,
Cleveland, OH
,
Aug. 6–9
,
DETC2017-67999
.
18.
Krahn
,
J.
,
Liu
,
Y.
,
Sadeghi
,
A.
, and
Menon
,
C.
,
2011
, “
A Tailless Timing Belt Climbing Platform Utilizing Dry Adhesives With Mushroomcaps
,”
Smart Mater. Struct.
,
20
(
11
), p.
11021
. 10.1088/0964-1726/20/11/115021
19.
Greuter
,
M.
,
Shah
,
G.
,
Caprari
,
G.
,
Tache
,
F.
,
Siegwart
,
R.
, and
Sitti
,
M.
,
2005
, “
Toward Micro Wall-Climbing Robots Using Biomimetic Fibrillar Adhesives
,”
Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE)
,
Fukui, Japan
,
Sept. 20–22
, pp.
39
46
.
20.
Day
,
P.
,
Eason
,
E. V.
,
Esparza
,
N.
,
Christensen
,
D.
, and
Cutkosky
,
M.
,
2013
, “
Microwedge Machining for the Manufacture of Directional Dry Adhesives
,”
ASME J. Micro. Nano-Manuf.
,
1
(
1
), p.
011001
. 10.1115/1.4023161
21.
Hawkes
,
E. W.
,
Christensen
,
D. L.
, and
Cutkosky
,
M. R.
,
2015
, “
Vertical Dry Adhesive Climbing With a 100× Bodyweight Payload
,”
IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30, 2015
, pp.
3762
3769
,
IEEE 15286095
.
22.
Fuller
,
K. N. G.
, and
Tabor
,
D.
,
1975
, “
The Effect of Surface Roughness on the Adhesion of Elastic Solids
,”
Proc. R. Soc. London, A
,
345
(
1642
), pp.
327
342
. 10.1098/rspa.1975.0138
23.
Powelson
,
M. W.
, and
Canfield
,
S.
,
2018
, “
Experimental Investigation on Attachment Properties of Dry Adhesives Used in Climbing Robots
,”
Int. J. Mech. Rob. Syst.
,
4
(
3
), pp.
192
213
. 10.1504/IJMRS.2018.095951
24.
Logan
,
D. L.
,
2012
,
A First Course in the Finite Element Method 5th Edition
,
Cengage Learning
,
Stamford, CT
.
25.
Murphy
,
M. P.
,
Kim
,
S.
, and
Sitti
,
M.
,
2009
, “
Enhanced Adhesion by Gecko-Inspired Hierarchical Fibrillar Adhesives
,”
ACS Appl. Mater. Interfaces
,
1
(
4
), pp.
849
855
. 10.1021/am8002439
26.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Fearing
,
R.
, and
Full
,
R. J.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
. 10.1038/35015073
27.
Canfield
,
S.
,
Hill
,
T. W.
, and
Zuccaro
,
S. G.
,
2018
, “
Prediction and Experimental Validation of Power Consumption of Skid-Steer Mobile Robots in Manufacturing Environment
,”
J. Intell. Rob. Syst.
,
94
(
3–4
), pp.
825
839
.
28.
Hawkes
,
E. W.
,
Ulmen
,
J.
,
Esparza
,
N.
, and
Cutkosky
,
M. R.
,
2011
, “
Scaling Walls: Applying Dry Adhesives to the Real World
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30, 2011
, pp.
5100
5106
.
29.
Murphy
,
M. P.
, and
Sitti
,
M.
,
2007
, “
Waalbot: An Agile Small-Scale Wall-Climbing Robot Utilizing Dry Elastomer Adhesives
,”
IEEE/ASME Trans. Mech.
,
12
(
3
), pp.
330
338
. 10.1109/TMECH.2007.897277
30.
He
,
B.
,
Wang
,
Z.
,
Li
,
M.
,
Wang
,
K.
,
Shen
,
R.
, and
Hu
,
S.
,
2014
, “
Wet Adhesion Inspired Bionic Climbing Robot
,”
IEEE/ASME Trans. Mech.
,
19
(
1
), pp.
312
320
. 10.1109/TMECH.2012.2234473
31.
Hariri
,
H. H.
,
Yung
,
D.
,
Lim
,
H. C.
,
Dharmawan
,
A. G.
,
Nguyen
,
V. D.
,
Soh
,
G. S.
,
Foong
,
S.
,
Bouffanais
,
R.
,
Low
,
H. Y.
, and
Wood
,
K. L.
,
2018
, “
ORION-II: A Miniature Climbing Robot With Bilayer Compliant Tape for Autonomous Intelligent Surveillance and Reconnaissance
,”
15th International Conference on Control, Automation, Robotics, and Vision
,
Singapore
,
Nov. 18–21
, pp.
1621
1626
.
32.
Henrey
,
M.
,
Krahn
,
J.
,
Ahmed
,
A.
,
Wormnes
,
K.
, and
Menon
,
C.
,
2013
,
Climbing With Structured Dry Adhesives: Sticky Robots for Scaling Smooth Vertical Surfaces
,
Semantic Scholar
,
Stanford, CA
.
33.
Liu
,
Y.
, and
Seo
,
T. W.
,
2018
, “
AnyClimb-II: Dry-Adhesive Linkage-Type Climbing Robot for Uneven Vertical Surfaces
,”
Mech. Mach. Theory
,
124
(
June
), pp.
197
210
. 10.1016/j.mechmachtheory.2018.02.010
34.
Yu
,
Z.
,
Shi
,
Y.
,
Xie
,
J.
,
Yang
,
S.
, and
Dai
,
Z.
,
2018
, “
Design and Analysis of a Bionic Adhesive Foot for Gecko Robot Climbing the Ceiling
,”
Int. J. Rob. Autom.
,
33
(
4
), pp.
445
454
.
35.
Kalouche
,
S.
,
Wiltsie
,
N.
,
Su
,
H. J.
, and
Parness
,
A.
,
2014
, “
Inchworm Style Gecko Adhesive Climbing Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2319
2324
,
IEEE 14718279
.
36.
Kim
,
S.
,
Spenko
,
M.
,
Trujillo
,
S.
,
Heyneman
,
B.
,
Santos
,
D.
, and
Cutosky
,
M. R.
,
2008
, “
Smooth Vertical Surface Climbing With Directional Adhesion
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
65
74
. 10.1109/TRO.2007.909786
37.
Unver
,
O.
, and
Sitti
,
M.
,
2009
, “
A Miniature Ceiling Walking Robot With Flat Tacky Elastomeric Footpads
,”
IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17, 2009
, pp.
2276
2281
.
38.
Unver
,
O.
, and
Sitti
,
M.
,
2009
, “
Tankbot: A Miniature, Peeling Based Climber on Rough and Smooth Surfaces
,”
IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17, 2009
, pp.
2282
2287
.
39.
Seo
,
T. W.
, and
Sitti
,
M.
,
2013
, “
Tank-Like Module-Based Climbing Robot Using Passive Compliant Joints
,”
IEEE/ASME Trans. Mech.
,
18
(
1
), pp.
397
408
. 10.1109/TMECH.2011.2182617
40.
Menon
,
C.
,
Murphy
,
M.
, and
Sitti
,
M.
,
2004
, “
Gecko Inspired Surface Climbing Robots
,”
IEEE International Conference on Robotics and Biomimetics
,
Shenyang, China
,
Aug. 22–26, 2004
, pp.
431
436
,
IEEE 8732542
.
You do not currently have access to this content.