Abstract

Machine learning plays an important role in constructing intrusion detection models. However, the information era is an era of data. With the continuous increase in data size and the growth of data dimensions, the ability of a single classifier is becoming limited in predicting samples. In this paper, we present an ensemble method using random subspace in which an extreme learning machine (ELM) is chosen as the base classifier. To optimize the ensemble model, an ensemble pruning method based on the bat algorithm (BA) is proposed. Meanwhile, a fitness function based on the accuracy and diversity of an ensemble is defined in the BA to obtain an improved classifier subset. Three public datasets, the KDD99, NSL and Kyoto datasets, are adopted to assess the robustness of the method. The empirical results indicate that the ensemble method based on random subspace can improve the accuracy and robustness over the use of an individual ELM. The results also show that compared with when all the sub-classifiers are used in the ensemble, the pruning framework can not only achieve comparable or better performance but also save substantial computing resources in an intrusion detection system (IDS).

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)
Handling Editor: Steven Furnell
Steven Furnell
Handling Editor
Search for other works by this author on:

You do not currently have access to this article.