Global classical solutions of the Boltzmann equation without angular cut-off
HTML articles powered by AMS MathViewer
- by Philip T. Gressman and Robert M. Strain;
- J. Amer. Math. Soc. 24 (2011), 771-847
- DOI: https://doi.org/10.1090/S0894-0347-2011-00697-8
- Published electronically: March 18, 2011
- PDF | Request permission
Abstract:
This work proves the global stability of the Boltzmann equation (1872) with the physical collision kernels derived by Maxwell in 1866 for the full range of inverse-power intermolecular potentials, $r^{-(p-1)}$ with $p>2$, for initial perturbations of the Maxwellian equilibrium states, as announced in an earlier paper by the authors. We more generally cover collision kernels with parameters $s\in (0,1)$ and $\gamma$ satisfying $\gamma > -n$ in arbitrary dimensions $\mathbb {T}^n \times \mathbb {R}^n$ with $n\ge 2$. Moreover, we prove rapid convergence as predicted by the celebrated Boltzmann $H$-theorem. When $\gamma \ge -2s$, we have exponential time decay to the Maxwellian equilibrium states. When $\gamma <-2s$, our solutions decay polynomially fast in time with any rate. These results are completely constructive. Additionally, we prove sharp constructive upper and lower bounds for the linearized collision operator in terms of a geometric fractional Sobolev norm; we thus observe that a spectral gap exists only when $\gamma \ge -2s$, as conjectured by Mouhot and Strain. It will be observed that this fundamental equation, derived by both Boltzmann and Maxwell, grants a basic example where a range of geometric fractional derivatives occur in a physical model of the natural world. Our methods provide a new understanding of the grazing collisions in the Boltzmann theory.References
- Radjesvarane Alexandre, Une définition des solutions renormalisées pour l’équation de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 11, 987–991 (French, with English and French summaries). MR 1696193, DOI 10.1016/S0764-4442(99)80311-5
- Radjesvarane Alexandre, Around 3D Boltzmann non linear operator without angular cutoff, a new formulation, M2AN Math. Model. Numer. Anal. 34 (2000), no. 3, 575–590. MR 1763526, DOI 10.1051/m2an:2000157
- Radjesvarane Alexandre, Some solutions of the Boltzmann equation without angular cutoff, J. Statist. Phys. 104 (2001), no. 1-2, 327–358. MR 1851391, DOI 10.1023/A:1010317913642
- Radjesvarane Alexandre and Mouhamad El Safadi, Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules, Math. Models Methods Appl. Sci. 15 (2005), no. 6, 907–920. MR 2149928, DOI 10.1142/S0218202505000613
- Radjesvarane Alexandre, Integral estimates for a linear singular operator linked with the Boltzmann operator. I. Small singularities $0<\nu <1$, Indiana Univ. Math. J. 55 (2006), no. 6, 1975–2021. MR 2284553, DOI 10.1512/iumj.2006.55.2861
- Radjesvarane Alexandre, A review of Boltzmann equation with singular kernels, Kinet. Relat. Models 2 (2009), no. 4, 551–646. MR 2556715, DOI 10.3934/krm.2009.2.551
- R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal. 152 (2000), no. 4, 327–355. MR 1765272, DOI 10.1007/s002050000083
- R. Alexandre and C. Villani, On the Boltzmann equation for long-range interactions, Comm. Pure Appl. Math. 55 (2002), no. 1, 30–70. MR 1857879, DOI 10.1002/cpa.10012
- R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, and T. Yang, Uncertainty principle and kinetic equations, J. Funct. Anal. 255 (2008), no. 8, 2013–2066. MR 2462585, DOI 10.1016/j.jfa.2008.07.004
- Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, and Tong Yang, Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal. 198 (2010), no. 1, 39–123. MR 2679369, DOI 10.1007/s00205-010-0290-1
- Radjesvarane Alexandre, Y. Morimoto, Seiji Ukai, Chao-Jiang Xu, and Tong Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, preprint (Dec. 27, 2009), available at arXiv:0912.1426v2.
- Radjesvarane Alexandre, Y. Morimoto, Seiji Ukai, Chao-Jiang Xu, and Tong Yang, The Boltzmann equation without angular cutoff in the whole space: I. An essential coercivity estimate, preprint (May 28, 2010), available at arXiv:1005.0447v2.
- Radjesvarane Alexandre, Y. Morimoto, Seiji Ukai, Chao-Jiang Xu, and Tong Yang, Boltzmann equation without angular cutoff in the whole space: II. Global existence for soft potential, preprint (July 2, 2010), available at arXiv:1007.0304v1.
- Ricardo J. Alonso and Irene M. Gamba, Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys. 137 (2009), no. 5-6, 1147–1165. MR 2570766, DOI 10.1007/s10955-009-9873-3
- Ricardo J. Alonso, Emanuel Carneiro, and Irene M. Gamba, Convolution inequalities for the Boltzmann collision operator, Comm. Math. Phys. 298 (2010), no. 2, 293–322. MR 2669437, DOI 10.1007/s00220-010-1065-0
- Leif Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rational Mech. Anal. 77 (1981), no. 1, 11–21. MR 630119, DOI 10.1007/BF00280403
- Leif Arkeryd, Asymptotic behaviour of the Boltzmann equation with infinite range forces, Comm. Math. Phys. 86 (1982), no. 4, 475–484. MR 679196, DOI 10.1007/BF01214883
- Laurent Bernis and Laurent Desvillettes, Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation, Discrete Contin. Dyn. Syst. 24 (2009), no. 1, 13–33. MR 2476678, DOI 10.3934/dcds.2009.24.13
- A. V. Bobylëv, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Mathematical physics reviews, Vol. 7, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., vol. 7, Harwood Academic Publ., Chur, 1988, pp. 111–233. MR 1128328
- Ludwig Boltzmann, Lectures on gas theory, University of California Press, Berkeley-Los Angeles, Calif., 1964. Translated by Stephen G. Brush. MR 158708, DOI 10.1525/9780520327474
- Laurent Boudin and Laurent Desvillettes, On the singularities of the global small solutions of the full Boltzmann equation, Monatsh. Math. 131 (2000), no. 2, 91–108. MR 1798557, DOI 10.1007/s006050070015
- Torsten Carleman, Sur la théorie de l’équation intégrodifférentielle de Boltzmann, Acta Math. 60 (1933), no. 1, 91–146 (French). MR 1555365, DOI 10.1007/BF02398270
- Carlo Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences, vol. 67, Springer-Verlag, New York, 1988. MR 1313028, DOI 10.1007/978-1-4612-1039-9
- Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti, The mathematical theory of dilute gases, Applied Mathematical Sciences, vol. 106, Springer-Verlag, New York, 1994. MR 1307620, DOI 10.1007/978-1-4419-8524-8
- Yemin Chen, Laurent Desvillettes, and Lingbing He, Smoothing effects for classical solutions of the full Landau equation, Arch. Ration. Mech. Anal. 193 (2009), no. 1, 21–55. MR 2506070, DOI 10.1007/s00205-009-0223-z
- Yemin Chen and Lingbing He, Smoothing effect for Boltzmann equation with full-range interactions; Part I and Part II, arXiv preprint (July 22, 2010), available at arXiv:1007.3892.
- Laurent Desvillettes, About the regularizing properties of the non-cut-off Kac equation, Comm. Math. Phys. 168 (1995), no. 2, 417–440. MR 1324404, DOI 10.1007/BF02101556
- Laurent Desvillettes, Regularization for the non-cutoff $2$D radially symmetric Boltzmann equation with a velocity dependent cross section, Proceedings of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), 1996, pp. 383–394. MR 1407542, DOI 10.1080/00411459608220708
- Laurent Desvillettes, Regularization properties of the $2$-dimensional non-radially symmetric non-cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules, Transport Theory Statist. Phys. 26 (1997), no. 3, 341–357. MR 1475459, DOI 10.1080/00411459708020291
- Laurent Desvillettes, About the use of the Fourier transform for the Boltzmann equation, Riv. Mat. Univ. Parma (7) 2* (2003), 1–99. Summer School on “Methods and Models of Kinetic Theory” (M&MKT 2002). MR 2052786
- L. Desvillettes and F. Golse, On a model Boltzmann equation without angular cutoff, Differential Integral Equations 13 (2000), no. 4-6, 567–594. MR 1750040
- Laurent Desvillettes and Clément Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Ration. Mech. Anal. 193 (2009), no. 2, 227–253. MR 2525118, DOI 10.1007/s00205-009-0233-x
- Laurent Desvillettes and Bernt Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Partial Differential Equations 29 (2004), no. 1-2, 133–155. MR 2038147, DOI 10.1081/PDE-120028847
- Laurent Desvillettes and Cédric Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations 25 (2000), no. 1-2, 179–259. MR 1737547, DOI 10.1080/03605300008821512
- L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math. 159 (2005), no. 2, 245–316. MR 2116276, DOI 10.1007/s00222-004-0389-9
- R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2) 130 (1989), no. 2, 321–366. MR 1014927, DOI 10.2307/1971423
- Renjun Duan, On the Cauchy problem for the Boltzmann equation in the whole space: global existence and uniform stability in $L^2_{\xi }(H^N_x)$, J. Differential Equations 244 (2008), no. 12, 3204–3234. MR 2420519, DOI 10.1016/j.jde.2007.11.006
- Renjun Duan, Meng-Rong Li, and Tong Yang, Propagation of singularities in the solutions to the Boltzmann equation near equilibrium, Math. Models Methods Appl. Sci. 18 (2008), no. 7, 1093–1114. MR 2435186, DOI 10.1142/S0218202508002966
- Renjun Duan and Robert M. Strain, Optimal Time Decay of the Vlasov-Poisson-Boltzmann System in ${\mathbb {R}}^3$, Arch. Rational Mech. Anal. 199 (2011), no. 1, 291–328, available at arXiv:0912.1742., DOI 10.1007/s00205-010-0318-6
- Renjun Duan and Robert M. Strain, Optimal Large-Time Behavior of the Vlasov-Maxwell-Boltzmann System in the Whole Space, preprint (2010), available at arXiv:1006.3605v1.
- Nicolas Fournier and Hélène Guérin, On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity, J. Stat. Phys. 131 (2008), no. 4, 749–781. MR 2398952, DOI 10.1007/s10955-008-9511-5
- Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, DOI 10.1090/S0273-0979-1983-15154-6
- I. M. Gamba, V. Panferov, and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal. 194 (2009), no. 1, 253–282. MR 2533928, DOI 10.1007/s00205-009-0250-9
- Robert T. Glassey, The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1379589, DOI 10.1137/1.9781611971477
- T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions, J. Statist. Phys. 89 (1997), no. 3-4, 751–776. MR 1484062, DOI 10.1007/BF02765543
- Harold Grad, Asymptotic theory of the Boltzmann equation. II, Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962) Adv. Appl. Mech., Supplement 2, Academic Press, New York-London, 1963, pp. 26–59. MR 156656
- Philip T. Gressman and Robert M. Strain, Global Strong Solutions of the Boltzmann Equation without Angular Cut-off (Dec. 4, 2009), 55 pp., available at arXiv:0912.0888v1.
- Philip T. Gressman and Robert M. Strain, Global classical solutions of the Boltzmann equation with long-range interactions, Proc. Natl. Acad. Sci. USA 107 (2010), no. 13, 5744–5749. MR 2629879, DOI 10.1073/pnas.1001185107
- Philip T. Gressman and Robert M. Strain, Global Classical Solutions of the Boltzmann Equation with Long-Range Interactions and Soft-Potentials (Feb. 15, 2010), 51 pp., available at arXiv:1002.3639v1.
- Philip T. Gressman and Robert M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, submitted (July 8, 2010), 29pp., available at arXiv:1007.1276v1.
- Yan Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231 (2002), no. 3, 391–434. MR 1946444, DOI 10.1007/s00220-002-0729-9
- Yan Guo, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal. 169 (2003), no. 4, 305–353. MR 2013332, DOI 10.1007/s00205-003-0262-9
- Yan Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (2003), no. 3, 593–630. MR 2000470, DOI 10.1007/s00222-003-0301-z
- Yan Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J. 53 (2004), no. 4, 1081–1094. MR 2095473, DOI 10.1512/iumj.2004.53.2574
- Reinhard Illner and Marvin Shinbrot, The Boltzmann equation: global existence for a rare gas in an infinite vacuum, Comm. Math. Phys. 95 (1984), no. 2, 217–226. MR 760333, DOI 10.1007/BF01468142
- Shmuel Kaniel and Marvin Shinbrot, The Boltzmann equation. I. Uniqueness and local existence, Comm. Math. Phys. 58 (1978), no. 1, 65–84. MR 475532
- Shuichi Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math. 7 (1990), no. 2, 301–320. MR 1057534, DOI 10.1007/BF03167846
- Juhi Jang, Vlasov-Maxwell-Boltzmann diffusive limit, Arch. Ration. Mech. Anal. 194 (2009), no. 2, 531–584. MR 2563638, DOI 10.1007/s00205-008-0169-6
- S. Klainerman and I. Rodnianski, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal. 16 (2006), no. 1, 126–163. MR 2221254, DOI 10.1007/s00039-006-0551-1
- P.-L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London Ser. A 346 (1994), no. 1679, 191–204. MR 1278244, DOI 10.1098/rsta.1994.0018
- P.-L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ. 34 (1994), no. 2, 391–427, 429–461. MR 1284432, DOI 10.1215/kjm/1250519017
- Pierre-Louis Lions, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 1, 37–41 (French, with English and French summaries). MR 1649477, DOI 10.1016/S0764-4442(97)82709-7
- Tai-Ping Liu, Tong Yang, and Shih-Hsien Yu, Energy method for Boltzmann equation, Phys. D 188 (2004), no. 3-4, 178–192. MR 2043729, DOI 10.1016/j.physd.2003.07.011
- J. Clerk Maxwell, On the Dynamical Theory of Gases, Philosophical Transactions of the Royal Society of London 157 (1867), 49–88., DOI 10.1098/rstl.1867.0004
- Dietrich Morgenstern, General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 719–721. MR 63956, DOI 10.1073/pnas.40.8.719
- Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, and Tong Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst. 24 (2009), no. 1, 187–212. MR 2476686, DOI 10.3934/dcds.2009.24.187
- Clément Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations 31 (2006), no. 7-9, 1321–1348. MR 2254617, DOI 10.1080/03605300600635004
- Clément Mouhot and Robert M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9) 87 (2007), no. 5, 515–535 (English, with English and French summaries). MR 2322149, DOI 10.1016/j.matpur.2007.03.003
- Camil Muscalu, Jill Pipher, Terence Tao, and Christoph Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoam. 22 (2006), no. 3, 963–976. MR 2320408, DOI 10.4171/RMI/480
- Young Ping Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, II, Comm. Pure Appl. Math. 27 (1974), 407–428; ibid. 27 (1974), 559–581. MR 636407, DOI 10.1002/cpa.3160270402
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 290095
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970. MR 252961
- Robert M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Math. Phys. 268 (2006), no. 2, 543–567. MR 2259206, DOI 10.1007/s00220-006-0109-y
- Robert M. Strain, Optimal time decay of the non cut-off Boltzmann equation in the whole space, preprint (2010), available at arXiv:1011.5561v2.
- Robert M. Strain and Yan Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations 31 (2006), no. 1-3, 417–429. MR 2209761, DOI 10.1080/03605300500361545
- Robert M. Strain and Yan Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 (2008), no. 2, 287–339. MR 2366140, DOI 10.1007/s00205-007-0067-3
- Seiji Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad. 50 (1974), 179–184. MR 363332
- Seiji Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl. Math. 1 (1984), no. 1, 141–156. MR 839310, DOI 10.1007/BF03167864
- Seiji Ukai, Solutions of the Boltzmann equation, Patterns and waves, Stud. Math. Appl., vol. 18, North-Holland, Amsterdam, 1986, pp. 37–96. MR 882376, DOI 10.1016/S0168-2024(08)70128-0
- Cédric Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal. 143 (1998), no. 3, 273–307. MR 1650006, DOI 10.1007/s002050050106
- Cédric Villani, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off, Rev. Mat. Iberoamericana 15 (1999), no. 2, 335–352. MR 1715411, DOI 10.4171/RMI/259
- Cédric Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 71–305. MR 1942465, DOI 10.1016/S1874-5792(02)80004-0
- Cédric Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009), iv+141, available at arXiv:math/0609050v1.
- C. S. Wang Chang, G. E. Uhlenbeck, and J. de Boer, On the Propagation of Sound in Monatomic Gases, Univ. of Michigan Press, Ann Arbor, Michigan, 1952, pp. 1–56, available at http://deepblue.lib.umich.edu/.
Bibliographic Information
- Philip T. Gressman
- Affiliation: Department of Mathematics, University of Pennsylvania, David Rittenhouse Laboratory, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6395
- MR Author ID: 690453
- Email: gressman@math.upenn.edu
- Robert M. Strain
- Affiliation: Department of Mathematics, University of Pennsylvania, David Rittenhouse Laboratory, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6395
- MR Author ID: 746810
- ORCID: 0000-0002-1107-8570
- Email: strain@math.upenn.edu
- Received by editor(s): February 15, 2010
- Received by editor(s) in revised form: July 22, 2010, and January 21, 2011
- Published electronically: March 18, 2011
- Additional Notes: The first author was partially supported by the NSF grant DMS-0850791 and an Alfred P. Sloan Foundation Research Fellowship.
The second author was partially supported by the NSF grant DMS-0901463 and an Alfred P. Sloan Foundation Research Fellowship. - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 771-847
- MSC (2010): Primary 35Q20, 35R11, 76P05, 82C40, 35H20, 35B65, 26A33
- DOI: https://doi.org/10.1090/S0894-0347-2011-00697-8
- MathSciNet review: 2784329