One-to-one piecewise linear mappings over triangulations
HTML articles powered by AMS MathViewer
- by Michael S. Floater;
- Math. Comp. 72 (2003), 685-696
- DOI: https://doi.org/10.1090/S0025-5718-02-01466-7
- Published electronically: October 17, 2002
- PDF | Request permission
Abstract:
We call a piecewise linear mapping from a planar triangulation to the plane a convex combination mapping if the image of every interior vertex is a convex combination of the images of its neighbouring vertices. Such mappings satisfy a discrete maximum principle and we show that they are one-to-one if they map the boundary of the triangulation homeomorphically to a convex polygon. This result can be viewed as a discrete version of the Radó-Kneser-Choquet theorem for harmonic mappings, but is also closely related to Tutte’s theorem on barycentric mappings of planar graphs.References
- Dietrich Braess, Finite elements, Cambridge University Press, Cambridge, 1997. Theory, fast solvers, and applications in solid mechanics; Translated from the 1992 German original by Larry L. Schumaker. MR 1463151, DOI 10.1007/978-3-662-07233-2
- José E. Castillo (ed.), Mathematical aspects of numerical grid generation, Frontiers in Applied Mathematics, vol. 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991. MR 1109544, DOI 10.1137/1.9781611971019
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
- T. Duchamp, A. Certain, A. DeRose and W. Stuetzle, Hierarchical computation of PL harmonic embeddings, vol. preprint, 1997.
- Peter Duren and Walter Hengartner, Harmonic mappings of multiply connected domains, Pacific J. Math. 180 (1997), no. 2, 201–220. MR 1487561, DOI 10.2140/pjm.1997.180.201
- M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, Multiresolution analysis of arbitrary meshes, Computer Graphics Proceedings, SIGGRAPH 95 (1995), 173–182.
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- D. Field, Laplacian smoothing and Delaunay triangulation, Comm. Num. Meth. Eng. 4 (1988), 709–712.
- Michael S. Floater, Parametrization and smooth approximation of surface triangulations, Comput. Aided Geom. Design 14 (1997), no. 3, 231–250. MR 1441192, DOI 10.1016/S0167-8396(96)00031-3
- Michael S. Floater and Craig Gotsman, How to morph tilings injectively, J. Comput. Appl. Math. 101 (1999), no. 1-2, 117–129. MR 1664523, DOI 10.1016/S0377-0427(98)00202-7
- Arieh Iserles, A first course in the numerical analysis of differential equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1996. MR 1384977
- H. Kneser, Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verien. 35 (1926), 123–124.
- A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin, MAPS: Multiresolution adaptive parameterization of surfaces, Computer Graphics Proceedings, SIGGRAPH 98 (1998), 95–104.
- C. Wayne Mastin and Joe F. Thompson, Elliptic systems and numerical transformations, J. Math. Anal. Appl. 62 (1978), no. 1, 52–62. MR 478086, DOI 10.1016/0022-247X(78)90217-2
- Ulrich Pinkall and Konrad Polthier, Computing discrete minimal surfaces and their conjugates, Experiment. Math. 2 (1993), no. 1, 15–36. MR 1246481, DOI 10.1080/10586458.1993.10504266
- E. Praun, W. Sweldens, and P. Schröder, Consistent mesh parameterizations, Computer Graphics Proceedings, SIGGRAPH 01 (2001), 179–184.
- Franco P. Preparata and Michael Ian Shamos, Computational geometry, Texts and Monographs in Computer Science, Springer-Verlag, New York, 1985. An introduction. MR 805539, DOI 10.1007/978-1-4612-1098-6
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5
- T. Radó, Aufgabe 41, Jahresber. Deutsch. Math.-Verien. 35 (1926), 49.
- W. T. Tutte, How to draw a graph, Proc. London Math. Soc. (3) 13 (1963), 743–767. MR 158387, DOI 10.1112/plms/s3-13.1.743
- Richard S. Varga, Matrix iterative analysis, Second revised and expanded edition, Springer Series in Computational Mathematics, vol. 27, Springer-Verlag, Berlin, 2000. MR 1753713, DOI 10.1007/978-3-642-05156-2
Bibliographic Information
- Michael S. Floater
- Affiliation: SINTEF Applied Mathematics, P.O. Box 124 Blindern, 0314 Oslo, Norway
- Email: mif@math.sintef.no
- Received by editor(s): July 9, 2001
- Published electronically: October 17, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 685-696
- MSC (2000): Primary 65N30, 58E20; Secondary 05C85, 65M50
- DOI: https://doi.org/10.1090/S0025-5718-02-01466-7
- MathSciNet review: 1954962