Minimum energy paths for transitions such as atomic and/or spin rearrangements in thermalized systems are the transition paths of largest statistical weight. Such paths are frequently calculated using the nudged elastic band method, where an initial path is iteratively shifted to the nearest minimum energy path. The computational effort can be large, especially when ab initio or electron density functional calculations are used to evaluate the energy and atomic forces. Here, we show how the number of such evaluations can be reduced by an order of magnitude using a Gaussian process regression approach where an approximate energy surface is generated and refined in each iteration. When the goal is to evaluate the transition rate within harmonic transition state theory, the evaluation of the Hessian matrix at the initial and final state minima can be carried out beforehand and used as input in the minimum energy path calculation, thereby improving stability and reducing the number of iterations needed for convergence. A Gaussian process model also provides an uncertainty estimate for the approximate energy surface, and this can be used to focus the calculations on the lesser-known part of the path, thereby reducing the number of needed energy and force evaluations to a half in the present calculations. The methodology is illustrated using the two-dimensional Müller-Brown potential surface and performance assessed on an established benchmark involving 13 rearrangement transitions of a heptamer island on a solid surface.

1.
E.
Wigner
,
Trans. Faraday Soc.
34
,
29
(
1938
).
3.
J. C.
Keck
, “
Variational theory of reaction rates
,” in
Advance in Chemical Physics
, edited by
I.
Prigogine
(
John Wiley & Sons
,
1967
), Vol. 13, pp.
85
121
.
4.
G. K.
Schenter
,
G.
Mills
, and
H.
Jónsson
,
J. Chem. Phys.
101
,
8964
(
1994
).
5.
G.
Mills
,
H.
Jónsson
, and
G. K.
Schenter
,
Surf. Sci.
324
,
305
(
1995
).
6.
G. H.
Jóhannesson
and
H.
Jónsson
,
J. Chem. Phys.
115
,
9644
(
2001
).
7.
T.
Bligaard
and
H.
Jónsson
,
Comput. Phys. Commun.
169
,
284
(
2005
).
8.
G. H.
Vineyard
,
J. Phys. Chem. Solids
3
,
121
(
1957
).
9.
H.
Jónsson
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
944
(
2011
).
10.
P. F.
Bessarab
,
V. M.
Uzdin
, and
H.
Jónsson
,
Phys. Rev. B
85
,
184409
(
2012
).
11.
P. F.
Bessarab
,
V. M.
Uzdin
, and
H.
Jónsson
,
Z. Phys. Chem.
227
,
1543
(
2013
).
12.
P. F.
Bessarab
,
V. M.
Uzdin
, and
H.
Jónsson
,
Phys. Rev. B
89
,
214424
(
2014
).
13.
P. F.
Bessarab
,
A.
Skorodumov
,
V. M.
Uzdin
, and
H.
Jónsson
,
Nanosyst.: Phys., Chem., Math.
5
,
757
(
2014
).
14.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, “
Nudged elastic band method for finding minimum energy paths of transitions
,” in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
1998
), pp.
385
404
.
15.
P. F.
Bessarab
,
V. M.
Uzdin
, and
H.
Jónsson
,
Comput. Phys. Commun.
196
,
335
(
2015
).
16.
A. A.
Peterson
,
J. Chem. Phys.
145
,
074106
(
2016
).
17.
A.
O’Hagan
and
J. F. C.
Kingman
,
J. R. Stat. Soc. B
40
,
1
(
1978
).
18.
D. J. C.
MacKay
, “
Introduction to Gaussian processes
,” in
Neural Networks and Machine Learning
, edited by
C. M.
Bishop
(
Springer Verlag
,
1998
), pp.
133
166
.
19.
R. M.
Neal
, “
Regression and classification using Gaussian process priors (with discussion)
,” in
Bayesian Statistics
, edited by
J. M.
Bernardo
,
J. O.
Berger
,
A. P.
Dawid
, and
A. F. M.
Smith
(
Oxford University Press
,
1999
), Vol. 6, pp.
475
501
.
20.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
MIT Press
,
2006
).
21.
O.-P.
Koistinen
,
E.
Maras
,
A.
Vehtari
, and
H.
Jónsson
,
Nanosyst.: Phys., Chem., Math.
7
,
925
(
2016
); a slightly corrected version is available as e-print arXiv:1703.10423.
22.
J.
Lampinen
and
A.
Vehtari
,
Neural Networks
14
,
257
(
2001
).
23.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
24.
B.
Shahriari
,
K.
Swersky
,
Z.
Wang
,
R. P.
Adams
, and
N.
de Freitas
,
Proc. IEEE
104
,
148
(
2016
).
25.
K.
Müller
and
L. D.
Brown
,
Theor. Chim. Acta
53
,
75
(
1979
).
26.
S.
Smidstrup
,
A.
Pedersen
,
K.
Stokbro
, and
H.
Jónsson
,
J. Chem. Phys.
140
,
214106
(
2014
).
27.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
28.
D.
Sheppard
,
R.
Terrell
, and
G.
Henkelman
,
J. Chem. Phys.
128
,
134106
(
2008
).
29.
A.
O’Hagan
, “
Some Bayesian numerical analysis
,” in
Bayesian Statistics
, edited by
J. M.
Bernardo
,
J. O.
Berger
,
A. P.
Dawid
, and
A. F. M.
Smith
(
Oxford University Press
,
1992
), Vol. 4, pp.
345
363
.
30.
C. E.
Rasmussen
, “
Gaussian processes to speed up hybrid Monte Carlo for expensive Bayesian integrals
,” in
Bayesian Statistics
, edited by
J. M.
Bernardo
,
A. P.
Dawid
,
J. O.
Berger
,
M.
West
,
D.
Heckerman
,
M. J.
Bayarri
, and
A. F. M.
Smith
(
Oxford University Press
,
2003
), Vol. 7, pp.
651
659
.
31.
E.
Solak
,
R.
Murray-Smith
,
W. E.
Leithead
,
D. J.
Leith
, and
C. E.
Rasmussen
, “
Derivative observations in Gaussian process models of dynamic systems
,” in
Advances in Neural Information Processing Systems
, edited by
S.
Becker
,
S.
Thrun
, and
K.
Obermayer
(
MIT Press
,
2003
), Vol. 15, pp.
1057
1064
.
32.
J.
Riihimäki
and
A.
Vehtari
, “
Gaussian processes with monotonicity information
,” in
Proceedings of Machine Learning Research
, edited by
Y. W.
Teh
and
M.
Titterington
(
PMLR
,
2010
), Vol. 9, pp.
645
652
.
33.
A. P.
Bartók
and
G.
Csányi
,
115
,
1051
(
2015
).
34.
G.
Henkelman
,
G. H.
Jóhannesson
, and
H.
Jónsson
, “
Methods for finding saddle points and minimum energy paths
,” in
Progress in Theoretical Chemistry and Physics
, edited by
S. D.
Schwartz
(
Kluwer Academic
,
2000
), Vol. 5, pp.
269
300
.
35.
S. T.
Chill
,
J.
Stevenson
,
V.
Ruhle
,
C.
Shang
,
P.
Xiao
,
J. D.
Farrell
,
D. J.
Wales
, and
G.
Henkelman
,
J. Chem. Theory Comput.
10
,
5476
(
2014
).
36.
J.
Vanhatalo
,
J.
Riihimäki
,
J.
Hartikainen
,
P.
Jylänki
,
V.
Tolvanen
, and
A.
Vehtari
,
J. Mach. Learn. Res.
14
,
1175
(
2013
).
37.
C. M.
Bishop
, “
Scaled conjugate gradients
,” in
Neural Networks for Pattern Recognition
(
Clarendon Press
,
1995
), pp.
282
285
.
38.

Transitions A and B are not included in the averages shown in Fig. 9 because the regular CI-NEB required an anomalously large number of iterations for some of the intermediate numbers of degrees of freedom. The results of the GPR algorithms were, however, similar for all numbers of degrees of freedom tested here.

39.
E. R.
Batista
and
H.
Jónsson
,
Comput. Mater. Sci.
20
,
325
(
2001
).
40.
E.
Maras
,
O.
Trushin
,
A.
Stukowski
,
T.
Ala-Nissilä
, and
H.
Jónsson
,
Comput. Phys. Commun.
205
,
13
(
2016
).
41.
J.
Vanhatalo
and
A.
Vehtari
, “
Speeding up the binary Gaussian process classification
,” in
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI, 2010)
, edited by
P.
Gründwald
and
P.
Spirtes
(
AUAI Press
,
2010
), pp.
623
632
.
42.
G.
Mills
,
G. K.
Schenter
,
D. E.
Makarov
, and
H.
Jónsson
,
Chem. Phys. Lett.
278
,
91
(
1997
).
43.
G.
Mills
,
G. K.
Schenter
,
D. E.
Makarov
, and
H.
Jónsson
, “
RAW quantum transition state theory
,” in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
1998
), pp.
405
421
.
You do not currently have access to this content.