We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.

1.
G.
Innocenti
,
A.
Morelli
,
R.
Genesio
, and
A.
Torcini
,
Chaos
17
,
043128
(
2007
).
2.
J. L.
Hindmarsh
and
R. M.
Rose
,
Nature (London)
296
,
162
(
1982
).
3.
J. L.
Hindmarsh
and
R. M.
Rose
,
Proc. R. Soc. London, Ser. B
221
(
1222
),
87
(
1984
).
5.
A. L.
Hodgkin
and
A. F.
Huxley
,
J. Physiol. (London)
117
,
500
(
1952
).
6.
B.
Lindner
,
J.
Garcia-Ojalvo
,
A.
Neimand
, and
L.
Schimansky-Geiere
,
Phys. Rep.
392
,
321
(
2004
).
7.
S.
Reinker
,
E.
Puil
, and
R. M.
Miura
,
Bull. Math. Biol.
65
,
641
(
2003
).
8.
R.
Yang
and
A.
Song
,
Int. J. Mod. Phys. B
22
(
30
),
5365
(
2008
).
9.
P.
Addesso
,
G.
Filatrella
, and
V.
Pierro
,
Phys. Rev. E
85
,
016708
(
2012
).
10.
P.
Addesso
,
V.
Pierro
, and
G.
Filatrella
,
Eur. Phys. Lett.
101
,
20005
(
2013
).
11.
P. C.
Bressloff
and
Y.
Ming Lais
,
J. Math. Neurosci.
1
,
2
(
2011
).
12.
R.
Yamapi
,
G.
Filatrella
, and
M. A.
Aziz-Alaoui
,
Chaos
20
,
013114
(
2010
).
13.
A.
Chéagé Chamgoué
,
R.
Yamapi
, and
P.
Woafo
,
Eur. Phys. J. Plus
127
(
5
),
59
(
2012
).
14.
P.
Ghosh
,
S.
Sen
,
S.
Shahed Riaz
, and
D.
Shankar Ray
,
Phys. Rev. E
83
,
036205
(
2011
).
15.
S.
Xia
and
L.
Qi-Shao
,
Chin. Phys.
14
(
6
),
1088
(
2005
).
16.
Y.
Wang
,
Z. D.
Wang
, and
W.
Wang
,
J. Phys. Soc. Jpn.
69
(
1
),
276
(
2000
).
17.
A.
Longtin
,
A. R.
Bulsara
, and
F.
Moss
,
Phys. Rev. Lett.
67
,
656
(
1991
).
18.
A.
Longtin
,
A. R.
Bulsara
,
D.
Pierson
, and
F.
Moss
,
Biol. Cybern.
70
,
569
(
1994
).
19.
B.
McNamara
and
K.
Wiesenfeld
,
Phys. Rev. A
39
,
4854
(
1989
).
20.
N.
Corson
, “
Dynamique d'un modèle neuronal, Synchronisation et Complexité
,” Thèse de Doctorat (
UFD Sciences et Techniques, Université du Havre, France
,
2009
).
21.
N.
Corson
and
M. A.
Aziz-Alaoui
,
Dyn. Contin. Discrete Impulsive Syst.: Ser. B
16
(
4
),
535
(
2009
).
22.
N.
Corson
,
M. A.
Aziz-Alaoui
,
R.
Ghnemat
,
S.
Balev
, and
C.
Bertelle
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
22
(
2
),
1250025
(
2012
).
23.
J.
Rinzel
, “
Bursting oscillations in an excitable membrane model
,” in
Ordinary and Partial Differential Equations
, Lecture Notes in Mathematics, Vol. 1151, p.
304
(Springer,1985).
24.
J.
Rinzel
and
B.
Ermentrout
, “
Analysis of neural excitability and oscillations
,”
in Methods of Neural Modeling: From Synapses to Networks
, edited by
C.
Koch
and
I.
Segev
(
MIT Press
,
1989
), p.
135
.
25.
D.
Terman
,
J. Nonlinear Sci.
2
,
135
(
1992
).
27.
G.
Cymbalyuk
,
Q.
Gaudry
,
M. A.
Masino
, and
R. L.
Calabrese
,
J. Neurosci.
22
,
10580
(
2002
).
28.
M.
Bazhenov
,
I.
Timofeev
,
M.
Steriade
, and
T. J.
Sejnowski
,
J. Neurophysiol.
84
,
1076
(
2000
).
30.
R.
Bertram
and
A.
Sherman
,
J. Biosci.
25
,
197
(
2000
).
31.
A.
Hill
,
J.
Lu
,
M.
Masino
,
O.
Olsen
, and
R. L.
Calabrese
J. Comput. Neurosci.
10
,
281
(
2001
).
32.
H.
Gu
,
M.
Yang
,
L.
Li
,
Z.
Liu
, and
W.
Ren
,
Phys. Lett. A
319
,
89
(
2003
).
33.
Z.
Yang
,
Q.
Lu
, and
L.
Li
,
Chaos, Solitons Fractals
27
,
689
(
2006
).
34.
J. M.
González-Miranda
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
17
(
9
),
3071
(
2007
).
35.
C.
Beauchemin
,
L'impact du bruit sur la dynamique d'un neurone
,
Départment de Physique, Université d'Ottawa
,
Canada
,
2006
.
36.
R.
Yamapi
,
G.
Filatrella
,
M. A.
Aziz-Alaoui
, and
C.
Hilda
,
Chaos
22
,
043114
(
2012
).
37.
L.
Arnold
,
Random Dynamical Systems
(
Springer
,
New York
,
1998
).
38.
T. D.
Frank
,
Nonlinear Fokker-Planck Equations, Fundamentals and Applications, Springer Series in Synergetics
(
Springer-Verlag
,
Berlin, Heidelberg
,
2005
).
39.
F.
Schmidt
, “
Systèmes dynamiques et incertitudes
,” Thèse de Doctorat (
Institut National des Sciences Appliquées de Lyon
,
2009
).
40.
V. V.
Osipov
and
E. V.
Ponizovskaya
,
Phys. Lett. A
238
,
369
(
1998
).
41.
V. V.
Osipov
and
E. V.
Ponizovskaya
,
Phys. Lett. A
271
,
191
(
2000
).
42.
Y.
Wang
, “
Generalized Fokker-Planck equation with generalized interval probability
,”
Mech. Syst. Signal Process.
37
,
92
104
(
2013
).
43.
D. E.
Knuth
,
The Art of Computer Programming
(
Addison-Wesley
,
Reading
,
1996
), Vol.
2
.
You do not currently have access to this content.